

Vector Quantization and Reduced Models

Willy Wriggers, Ph.D.

Department of Molecular Biology The Scripps Research Institute 10550 N. Torrey Pines Road, Mail TPC6 La Jolla, California, 92037

Situs Modeling Workshop, San Diego, CA, Feb. 3-5, 2003

Top 20 , 7!=5040 possible pairs of codebook vectors.				
	Δ_I	$C_{_{hl}}$	I (permutation)	
12.34.56.789.00112.134.56.7.89.00112.134.56.7.89.00112.134.56.7.89.00112.134.56.7.89.00112.000112.00000000	$\begin{array}{c} 3.115\\ 4.945\\ 5.455\\ 6.316\\ 7.855\\ 7.994\\ 8.094\\ 8.192\\ 8.244\\ 8.298\\ 8.340\\ 8.4516\\ 8.532\\ 8.988\\ 9.0924\\ 9.124\\ 9.236\\ \end{array}$	0.913 0.904 0.897 0.882 0.868 0.888 0.888 0.888 0.888 0.888 0.885 0.885 0.885 0.857 0.865 0.857 0.861 0.839 0.858 0.858	$\begin{array}{c} (7,5,1,6,4,2,3)\\ (2,3,5,7,4,6,1)\\ (5,7,4,3,2,4,7,5)\\ (5,7,4,3,1,2,6)\\ (5,7,1,4,6,3,2)\\ (4,6,4,5,3,7,2)\\ (4,6,4,5,3,7,2)\\ (4,6,4,5,3,1,7,5)\\ (7,5,6,2,1,3,4)\\ (2,6,4,6,2,1,5,7)\\ (7,5,6,2,1,3,4)\\ (2,6,4,6,2,1,5,7)\\ (3,4,6,2,5,1,7,6)\\ (3,4,6,2,5,1,7,6)\\ (3,4,6,2,5,1,7,6)\\ (3,4,6,2,5,1,7,6)\\ (3,4,6,2,5,1,7,6)\\ (3,4,6,2,5,1,7,6)\\ (3,4,6,2,5,1,7,6)\\ (3,4,5,7,1,2,6)\\ (3,2,5,3,2,4,1,6)\\ (3,2,5,3,2,4,1,6)\\ (7,6,5,7,4,2,3)\end{array}$	For a fixed <i>k</i> , codebook rmsd is more stringent criterion than correlation coefficient!

Performance (III)

Multiple Subunits

Egelman lab: High-resolution reconstructions of F-actin - plant ADF based on single-particle image processing.

Unrestrained vectors fail to distinguish between actin and ADF densities (poor segmentation)

Remedies:

•Skeletons (today) •Correlation-Based Search (P Chacón, today; J. Kovacs, tomorrow)

Visualization with Situs and VMD

Estimating Adjacency: Competitive Hebb Rule Implemented after Situs 1.4: Nearest-neighbor search can be coupled with vector quantization (Martinetz & Schulten, 1993): Initially, set all connections C_{ij} to zero. For each VQ adaptation step: 1. Find pair of winning vectors, W_{j0} , W_{j1} . 2. Set $C_{j0,j1} = 1$ (connect) $T_{j0,j1} = 0$ (refresh). 3. Increase the age of all connections of *j*0: $\forall j: T_{j0,j} = C_{j0,j} \cdot (T_{j0,j} + 1)$ 4. Remove old connections. If $T_{j0,j1} > T$, set $C_{j0,j1} = 0$. 5. Continue with next VQ step.

(ii) Non-Linear Kernel Interpolation Consider all *k* vectors and interpolation kernel function *U*(*r*). Ansatz: $F_x(x, y, z) = a_1 + a_x x + a_y y + a_z z + \sum_{k=1}^k b_i \cdot U\left(|\mathbf{w}_i - (x, y, z)|\right)$ $F_x(\mathbf{w}_i) = f_{i,x}, \forall i \quad (\text{similar for } F_y, F_z).$ Solve : $\mathbf{L}^{-1}(f_{1,x}, \cdots, f_{k,x}, 0, 0, 0, 0) = (b_1, \cdots, b_k, a_1, a_x, a_y, a_z)^{\mathsf{T}},$ where $\mathbf{L} = \left(\frac{\mathbf{P} \mid \mathbf{Q}}{\mathbf{Q}^{\mathsf{T}} \mid \mathbf{0}}\right), \quad \mathbf{Q} = \left(\begin{array}{ccc} 1 & w_{1,x} & w_{1,y} & w_{1,z} \\ \cdots & \cdots & \cdots \\ 1 & w_{k,x} & w_{k,y} & w_{k,z} \end{array}\right), k \times 4,$ $\mathbf{P} = \left(\begin{array}{ccc} 0 & U(w_{12}) & \cdots & U(w_{1k}) \\ U(w_{21}) & 0 & \cdots & U(w_{2k}) \\ \cdots & \cdots & \cdots \\ U(w_{k1}) & U(w_{k2}) & \cdots & 0 \end{array}\right), k \times k.$

