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Protein Dynamics is Hierarchical

Vibration of bonds: 10-15 s

Large-scale functional motionsProtein folding/unfolding

10-6 s, 10-3 s, s or even longer 



From experiments to theory

Experimental techniques: 
X-ray crystallography, NMR, Cryo-EM etc 

Computer Simulations



Molecular Dynamics Simulation
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NAMD, Amber, CHARMM, Gromos, etc.



Applications of MD

• Conformational space search

• Equilibrium state of the system

• Actual protein dynamics

Karplus M, McCammon JA: Molecular dynamics simulations of biomolecules. 
Nature Struct Biol 2002, 9:646-652.



Sampling Problem

Energy Surface →
Exploration by Simulation.

© Jeremy Smith



Sampling techniques

• Umbrella sampling

• Targeted molecular dynamics

• Steered molecular dynamics

• Methods based on collective coordinates



A Simple Example of Collective coordinate

0 2 4 6 8 10
0

2

4

6

8

10

y

x

2 2
2 2

z x y= +



Collective coordinates in proteins

• Principal Component Analysis

( )( )ij i i j jC x x x x= − −

• Normal Mode Analysis
2

ij i jC V x x= ∂ ∂ ∂

TC U U= Λ

• Diagonalize Hessian matrix



Eigenvalues and Eigenvectors

Matrix algebra

Online introduction, e.g.

http://www.sosmath.com/matrix/matrix.html



Principal Component Analysis

Can be applied to MD simulation trajectories to detect the global, 
correlated motions of the system (the principal components).

Why are the PCs important?

Amadei et al. argue that we can separate the configurational space into 2 
sub-spaces:

1. The Essential subspace: correlated motions comprising only a few of 
the degrees of freedom available to the protein = FUNCTIONALLY 
IMPORTANT

2. The “Irrelevant” subspace: independent, Gaussian fluctuations, which 
are constrained and of no/little functional relevance – act locally

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/



Overview

MD trajectory

Construct & diagonalize
covariance matrix

Eigenvectors, 
ranked by eigenvalue

Analyse eigenvectors:
eg. Visualisation of motions

Global, concerted motions

Constrained, fluctuations

© Sansom lab, http://indigo1.biop.ox.ac.uk/MD_workshops/

First 2 eigenvectors account for 
60% of total positional fluctuations



Visualizing PCs

Porcupine plots can be used to display the motion
described by an eigenvector in a static image.

A cone extending from the C-alpha position
shows the direction of the atom along the
eigenvector.

© http://dynamite.biop.ox.ac.uk/dynamite

Covariance plots are a tool to visualize
atoms which have a high correlation 
coefficient from the covariance matrix



Sampling techniques based on 
collective coordinates

• Conformational Flooding and Chemical Flooding

• Amplified Collective Motions (ACM)

drive MD by collective coordinates (PCA or NMA) 

First approach with PCA: “Essential Molecular Dynamics”

Amadei, Linsen, Berendsen – Proteins (1993), 17:412-425

Use the PCs from free MD to drive a protein from one conformation to 
another. Used by Daidone et al. to study Cytochrome c folding with MD
Only 106 degrees of freedom out of a total 3000 were used to bias the 
simulation



Anisotropic Network Model: ANM
Protein is equivalent to a three dimensional elastic network
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Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I: Anisotropy of fluctuation 
dynamics of proteins with an elastic network model. Biophys J 2001, 80:505-515.



Weak-coupling method
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Kinetic energy

Actual temperature

Used to scale velocities

Temperature-scaling factor 



Amplified-collective-motion technique

⎭
⎬
⎫=

⎩
⎨
⎧ →

NiVi ......,,2,1;

}; 1, 2,......,c rV Nα α
→⎧

=⎨
⎩

1
1 1

( )
rNn

c l l
l

V V e eα α

α

→ →→ →

= =

⎡ ⎤
= ⋅⎢ ⎥

⎣ ⎦
∑ ∑ 2 1V V V

→ → →

= −

1 2h lS SV VV
→ →→

= +

T0 = 800K T0 = 300K

Total velocities

Velocities of C.O.M 
of residues

Velocity projection onto 
low-frequency NMs

Other velocities
orthogonal



T=358K

T=274K (?)

Folding/Unfolding of S-Peptide Analog

ACM 30-ns 3-modes @ 358K + other-DOF @ 274K
Normal modes are updated every 10-25 time steps
Control simulation 30-ns all-DOF 274K
implicit water model: Generalized Born model

Zhang et al., Biophys J. (2003) 84:3583-93. 



Secondary structures (by DSSP)



Folding/Unfolding of S-Peptide Analog



Domain motions in Bacteriophage

T4 lysozyme

Closure mode
(178L vs 152L)

Twist mode
(174L vs 150L)
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Projections onto the Functional Subspace

ACM: 3-ns
3 modes @ 800K 
others @ 300K
Modes are 
updated every 100 
time steps
Standard MD 3-ns 
all @ 300K
SPC water model



Domain motions in T4L



Myosin – Normal Mode Analysis

Converter Domain/Lever Arm

Actin Binding Domain

Upper 50K Domain 

ATP Binding/Hydrolysis Site

Essential Light Chain

Regulatory Light Chain

The myosin cross-bridge is a molecular machine with 
communicating functional units. How can the small changes 
at the active site be amplified into the large conformational 
changes? How do mutations interfere its functional dynamics?



ACM vs. MD: 

Myosin



Myosin - structure comparison

MD simulation (1ns)@300K:

6 degrees and 12 Angstrom

ACM simulation (1ns) (3@800K + others@300K):

31 degrees and 51 Angstrom



Global Collective Coordinates: 
What are the Limitations?

Goal: an alternative statistical theory that describe dynamic 
features locally and that does not suffer from the sampling 
and orthogonalization problems. 

Some ideas come from image processing, like face recognition.

In NMA, we do not know a priori which is a functionally relevant 
mode, the first 12 low-frequency modes are probable candidates.

In PCA, the global modes don’t converge due to time limitations of 
the molecular dynamics simulation (sampling problem): 

Balsera MA, Wriggers W, Oono Y, Schulten K: Principal Component Analysis and Long 
Time Protein Dynamics. J Phys Chem 1996, 100: 2567-2572.



Local Feature Analysis (LFA)

Is LFA applicable to protein localized dynamics? 

From: Penev PS, Atick JJ: Local Feature Analysis: A General Statistical Theory for 
Object Representation. Network: computation in neural systems 1996, 7:477-500.

LFA is to derive local topographic representations for any 
class of objects. Unlike the global eigenmodes, they give a 
description of objects in terms of statistically derived local 
features and their positions. 



Local Feature Analysis (LFA)
- Theory (I)

Residual correlation: 

Covariance matrix from the MD simulation: 

PCA: PCA output:

General form for the LFA kernel: 

LFA output:



Local Feature Analysis (LFA)
- Theory (II)

Average reconstruction mean square error: 

We replaced the n global PCA modes with the full 3N LFA output functions. 
Therefore an additional dimensionality reduction step is required in the LFA 
output space. We approximate the entire 3N outputs with only a small subset 
of them that correspond to the strongest local features by taking advantage of 
the fact that neighboring outputs are highly correlated.

Reconstruct the outputs: 

Optimal linear prediction coefficients:



Sparse Distributions in T4L

(a) The first 4 PCA 
modes were used to do 
LFA, n=4; (b) n=8, (c) 
n=12, and (d) n=15. (e) 
Root-mean-square 
fluctuations of C_alpha
atoms in T4L. 



Output Functions’ Correlations

(a) The first 4 PCA 
modes were used to 
do LFA, n=4; (b) 
n=8, (c) n=12, and 
(d) n=15.



Local Dynamic Domains in T4L

(a) t=0 ns, (b) t=4.00 ns, and (c) t=8.25 ns. 
Four local features with different colors 



Compare with Experimental Results

(a) Projection of x-ray 
structures, and the MD 
simulation, (b) the most 
open structure (178L), 
and (c) the most closed 
structure (152L). 



Convergence of PCA and LFA

Different time windows have almost the same local features.



Convergence of PCA and LFA

The intrinsic dynamics of local domains is more extensively 
sampled than that of globally coherent PCA modes. 

LFA output functionsPCA output functions



Local Feature Analysis of Myosin

Converter Domain/Lever Arm

Actin Binding Domain

Upper 50K Domain 

ATP Binding/Hydrolysis Site

Essential Light Chain

Regulatory Light Chain

Twelve seed atoms Twelve local dynamical domains



Outlook: Predicting Functional Motion

• It appears that PCA and NMA over-estimate the coherence of global
motion across large biopolymers and create artifacts due to 
orthogonalization.

• LFA captures local dynamic features reproducibly and is less sensitive 
to  the MD sampling problem.

• There is hope for MD simulations of million-atom systems if we 
perform a statistical analysis that emphasizes dynamic domains 
that are moving independently from each other.



• ACM is a non-equilibrium simulation, how to recover 
the Boltzmann distribution and calculate thermodynamics 
properties?

• Improve the sparsification algorithm, and investigate the 
potential uses of LFA for applications in prediction, 
sampling and classification of large-scale macromolecular 
structure and dynamics.

Future work



Resources and Further Reading

WWW: 
http://www.sosmath.com/matrix/matrix.html
http://starship.python.net/crew/hinsen/MMTK
http://dynamite.biop.ox.ac.uk/dynamite

Papers:
L. I. Smith “A tutorial on Principal Component Analysis” (2002) e.g. at

http://kybele.psych.cornell.edu/%7Eedelman/Psych-465-Spring-2003/PCA-tutorial.pdf
Monique M Tirion (1996) Phys Rev Lett. 77:1905-1908
Zhang et al., Biophys J. (2003) 84:3583-93. 
Amadei, Linsen, Berendsen, Proteins (1993), 17:412-425
Balsera, Wriggers, Oono, Schulten J. Phys. Chem. 100:2567-2572 (1996)



• biomachina.org

• Dr. Danny Sorensen (Rice University)

• USTC: Prof. Haiyan Liu, Prof. Yunyu Shi
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