

SAXS Refinement

Willy Wriggers School of Health Information Sciences & Institute of Molecular Medicine University of Texas – Houston

Structural Biology

BL45 SAXS Station EBFP-linker-EGFP fusion proteins (Tetsuro Fujisawa)

LAEAAAKEAAAKEAAAKAAA (20)

SPring-8

LAEAAAKEAAAKEAAAKEAAAKAAA (25)

LAEAAAKEAAAKEAAAKEAAAKEAAAKAAA (30)

Generating 3D Structures from 1D SAXS Data

Low-resolution 3D shapes from 1D scattering profiles!

Small molecules OK!

Chacón et al., JMB (2000) 299:1289

ab initio Methods

Envelope function

Stuhrmann, H. B. (1970) *Z. Physik. Chem. N.F.* **72**, 177 Svergun, D.I. *et al.* (1996) *Acta Crystallogr.* **A52**, 419 **Bead models**

Chacón, P. *et al.* (1998) *Biophys. J.* **74,** 2760

Svergun, D.I. (1999) *Biophys. J.* **76**, 2879 **Dummy residues model**

Svergun, D.I., Petoukhov, M.V. & Koch, M.H.J. (2001) *Biophys. J.* **80**, 2946-2953.

All the methods minimize Discrepancy[Data] + Penalty[Additional info]

© Dimitri Svergun

Benchmarking ab initio Methods

Envelope Bead model Dummy residues

Comparison with the crystal structure of lysozyme

© Dimitri Svergun

How to Validate SAXS Bead Modeling?

Takahashi, Y., Nishikawa, Y., Fujisawa, T. Evaluation of three algorithms for ab initio determination of three-dimensional shape from onedimensional solution scattering profiles, (2003) *J Appl Cryst*, **36**, 549-552.

Ab initio Shape Determination using a Single Phase Dummy Atom Model

by Simulated Annealing (**DAMMIN**,Svergun)

by Genetic Algorithm (DALAI_GA, Chacon)

by Monte Calro style give 'n' take algorithm (**SAXS3D**, Walther)

Independent of algorithms, bead models converged to the average structure.

© Tetsuro Fujisawa

Simulated Bead Models for Validation

simulated bead models on a Hexagonal Close-Packed (HCP) lattice: "pdb2sax"

Example: Ovalbumin

(Wriggers & Chacon, J. Appl. Cryst., 34:773 (2001)

Accuracy of SAXS Rigid-Body Fitting

- rmsd is stable in lower single digits, until break-down occurs
- ten trial proteins (7cat,1qg3,2cga,1mbn,2nrd,1ova,1xso,1spp,1top,1tub): correct match missed: 0 times unique fit: 7 times (2 times symmetry-related) ambiguous fit (degenerate set of highest-scoring fits): 3 times it turns out that these 3 cases are proteins of sphericity > 0.5.

Accuracy of SAXS Rigid-Body Fitting

Protein used for generating bead model	PDB entry	Critical bead size (Å)*	Docking precision $(Å)^{\dagger}$	Oligomeric symmetry	Degeneracy of best fit [‡]	Sphericity ς
Catalase	7cat	16	0.8	$4 \times$	$4 \times$	0.57
β -4-integrin	1 qg 3	4	0.8	$1 \times$	$1 \times$	0.16
Chymotrypsinogen A	2cga	5	2.4	$1 \times$	$2 \times$	0.66
Myoglobin	$1 \mathrm{mbn}$	8	0.8	$1 \times$	$2 \times$	0.56
Nitrito-reductase	2 nrd	15	0.8	3 imes	$6 \times$	0.61
Ovalbumin	1ova	7	0.6	$1 \times$	$1 \times$	0.48
Spermadhesin	$1\mathrm{spp}$	8	0.8	$1 \times$	$1 \times$	0.48
Superoxide dismutase	$1 \mathrm{xso}$	9	2.7	$2 \times$	$2 \times$	0.46
Troponin C	$1 \mathrm{top}$	9	0.7	$1 \times$	$1 \times$	0.18
lphaeta-tubulin	$1 \mathrm{tub}$	11	1.8	$1 \times$	$1 \times$	0.48

Table 1. Characteristics of simulated SAXS bead models

* The value given is the smallest bead radius for which the rms deviation of the docked[§] to the target structure exceeded 10 Å.

 † The stated value is the rms deviation of the docked $^\$$ to the target structure averaged for bead radii 1, 2, and 3 Å.

[‡] The degeneracy is the number of optimum fits (at sub-critical bead size) that were empirically found to cluster within a narrow numeric range of the optimum score, due to symmetry effects or due to ambiguity of matching.

[§] For rmsd evaluations, the fit with the lowest rmsd among any degenerate fits was selected.

Accuracy of SAXS Rigid-Body Fitting

Based on the simulated SAXS trial runs, we can expect that fitting

- does not miss the correct match,

- but on occasion (for globular proteins), the correct match may be part of a number of degenerate highest-scoring fits (need more information).

The accuracy of the docking is on the order of 1A (or better) for more than 100 beads.

Large Systems: Connecting the Domains

© Tetsuro Fujisawa

Real vs. Reciprocal Space Refinement

The domain orientation is robust

© Tetsuro Fujisawa

2001: First SAXS Application of Situs

(Wriggers & Chacon, J. Appl. Cryst., 34:773 (2001)

Chymotrypsinogen A

Nitrito-Reductase

Design (SAXS)

pdb2sax

simulated bead models on a Hexagonal Close-Packed (HCP) lattice

Example: Ovalbumin

pdb2vol

Convolution with various kernels: Gaussian, hard sphere, cone, etc

2 uses:

• take SAXS bead model (centers of beads) and create EM style 3D volume map (hard sphere)

• create smooth envelope surrounding beads for visualization (Gaussian)

Visualization

old style: transparent beads

new style: isocontour

Fitting/Refinement

•colores: 6D FFT-based rigid-body (slow, but parallelized)

•colacor: rigid-body refinement of manual fit (gradient ascent of cross correlation)

•qrange: fast rigid-body (based on simulated markers, reduced search space)

•qpdb + qvol + MD refinement (X-PLOR): flexible fitting

Acknowledgements

Junjie Zhang Zhiyong Zhang Julius Wan Pablo Chacón

http://biomachina.org

•Collaborators: Dimitri Svergun (EMBL Hamburg Outstation) Tetsuro Fujisawa (Spring-8)

•Funding: NIH, Human Frontier Science Program, Alfred P. Sloan Foundation, W. M. Keck Center Houston, John P. McGovern Foundation Houston