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Frequency Analysis
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Here, we write a square 
wave as a sum of sine 
waves:



Transforms with Functions
Just as we transformed vectors, we can also transform functions:

Inverse

Transform
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The Fourier Transform
Most tasks need an infinite number of basis functions 
(frequencies), each with their own weight F(s): Harmonics {ei2πst}

Inverse

Transform

Fourier TransformFourier Series
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The Fourier Transform
To get the weights (amount of each frequency):F

To convert weights back into a signal (invert the transform):

F(s) is the Fourier Transform of f(t): F(f(t)) = F(s)

f(t) is the Inverse Fourier Transform of F(s): F-1(F(s)) = f(t)
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How to Interpret the Weights F(s)
The weights F(s) are complex numbers:

How much of a sinusoid of frequency s you need

What phase that sinusoid needs to be

Magnitude

Phase

How much of a cosine of frequency s you need

How much of a sine of frequency s you need

Real part

Imaginary part

Real

Imaginary
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Euler’s Formula
• Any complex number can be represented using Euler’s formula:

z = |z|eiφ (z) = |z|cos(φ ) + |z|sin(φ )i = a + bi

Real

Imaginary
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a = |z|cos(φ )
b = |z|sin(φ )



Magnitude and Phase
Remember: complex numbers can be thought of in two 
ways: (real, imaginary) or (magnitude, phase)

Magnitude:

Phase:
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Periodic Signals on a Grid
• Periodic signals with period N:

Underlying frequencies must also repeat over the period N
Each component frequency must be a multiple of the 
frequency of the periodic signal itself:

• If the signal is discrete:
Highest frequency is one unit: period repeats after a single sample

No more than N components
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Discrete Fourier Transform (DFT)
If we treat a discrete signal with N samples as one period of an 
infinite periodic signal, then

and

Note: For a periodic function, the discrete Fourier transform is the same as 
the continuous transform

We give up nothing in going from a continuous to a discrete 
transform as long as the function is periodic
Computational complexity: O(N2)
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Fast Fourier Transform

If we let

the Discrete Fourier Transform can be written

If N is a multiple of 2, N = 2M for some positive integer M, 
substituting 2M for N gives
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Fast Fourier Transform

Separating even and odd terms:

Can be written as

We can use this for the first M terms of the Fourier transform of 
2M items, then we can re-use these values to compute the last M
terms as follows:
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Fast Fourier Transform
If M is itself a multiple of 2, do it again!

If N is a power of 2, recursively subdivide until you have one 
element, which is its own Fourier Transform

ComplexSignal FFT(ComplexSignal f) {
if (length(f) == 1) return f;

M = length(f) / 2;
W_2M = e^(-I * 2 * Pi / M)  // A complex value.

even = FFT(EvenTerms(f));
odd  = FFT(OddTerms(f));

for (s = 0; s < M; s++) {
result[s  ] = even[s] + W_2M^s * odd[s];
result[s+M] = even[s] – W_2M^s * odd[s];

}
}



Fast Fourier Transform
Computational Complexity:

Remember: The FFT is just a faster algorithm for computing the DFT — it 
does not produce a different result

O(N log N)Fast Fourier Transform

O(N2)Discrete Fourier Transform



Impulses
One way of probing what a system does is to test it on a single input 
point (a single spike in the signal, a single point of light, etc.)

Mathematically, a perfect single-point input is written as:

δ(t) = 

and

δ(t)dt = 1

This is called the Dirac delta function
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Delta Function and its FT

1δ (t)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Sinusoids

½[δ(s + ω) + δ(s – ω)]

½[δ(s + ω) - δ(s – ω)]i

cos(2πωt)

sin(2πωt)

Frequency Domain
F(s)

Spatial Domain
f(t)



Constant Functions

δ (s)

a δ (s)

1

a

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Square Pulse

Πa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

sin(2 )2  sinc(2 ) asa as
s
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Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html



Triangle

a sinc2(as)Λa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

t0
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Comb (Shah) Function

δ (t mod 1/h)combh(t) = δ (t mod h)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm



Gaussian

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html
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2D and 3D FTs
The 2D Fourier Transform is linearly separable: the Fourier Transform 
of a 2D image is the 1D Fourier Transform of the rows followed by the 1D 
Fourier Transforms of the resulting columns:
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FT Properties: Addition Theorem
Adding two functions together adds their Fourier Transforms:

F(f + g) = F(f) + F(g) 

Multiplying a function by a scalar constant multiplies its Fourier 
Transform by the same constant:

F(a f) = aF(f)

Consequence: Fourier Transform is a linear transformation!



FT Properties: Shift Theorem
Translating (shifting) a function leaves the magnitude unchanged 
and adds a constant to the phase

If f2(t) = f1(t – a)

F1 = F(f1) 
F2 = F(f2) 

then
|F2| = |F1|

φ (F2) = φ (F1) - 2πsa

Intuition: magnitude tells you “how much”,
phase tells you “where”



FT Properties: Scaling Theorem
Scaling a function’s abscissa (domain or horizontal axis) inversely 
scales the both magnitude and abscissa of the Fourier transform.

If f2(t) = f1(a t)

F1 = F(f1) 
F2 = F(f2) 

then
F2(s) = (1/|a|) F1(s / a)



FT Properties: Rotation
Rotating a 2-D function rotates it’s Fourier Transform

If
f2 = rotateθ(f1)

= f1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

F1 = F(f1) 

F2 = F(f2)

then
F2(s) = F1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

i.e., the Fourier Transform is rotationally invariant.



Rotation Invariance (sort of)

© http://mail.udlap.mx/~oldwall/docencia/IMAGENES/chapter2/image_232_IS548.html

needs
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boundary
padding!



Convolution
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FT Properties: Convolution Theorem
Convolution 

f (t) * g(t) ↔ F(s) G(s) 

Correlation 

f (t) * g(-t) ↔ F(s) G*(s) 



FT Properties: Convolution Theorem
Let F, G, and H denote the Fourier Transforms of signals f, g, 
and h respectively

g = f(t) * h(t) implies G = F(s) H(s)

g = f(t) h(t) implies G = F(s) * H(s)

g = f(t) * h(-t) implies G = F(s) H* (s)

g = f(t) h(-t) implies G = F(s) * H*(s)

Convolution in one domain is multiplication in the other and vice 
versa



Template “Convolution”

•Actually, is a correlation method
•Goal: maximize correlation between target and probe image
•Here: only translations allowed but rotations also possible

target         probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Particle Picking

•Use spherical, or rotationally averaged probes
•Goal: maximize correlation between target and probe image

target            probe

microscope image of latex spheres

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Power Spectrum
The power spectrum of a signal is the Fourier Transform of its 
autocorrelation function:

P(s) = F(f (t) * f (-t))

= F(s) F*(s)

= |F(s)|2

It is also the squared magnitude of the Fourier transform of the
function

It is entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.



Use of Power Spectrum in Filtering

Original with noise patterns            Power spectrum showing noise spikes

Mask to remove periodic noise       Inverse FT with periodic noise removed
© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html



FT Properties: Rayleigh’s Theorem

Total sum of squares is the same in either domain:
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Figure and Text Credits 

Text and figures for this lecture were adapted in part from the following source, in 
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon,  97331



Resources 

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapter 10
John C. Russ, The Image Processing Handbook, Chapter 5


