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Frequency Analysis

Here, we write a square
wave as a sum of sine e Fourier Domain

waves: o * Signals (1D, 2D, ...)
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Transforms with Functions

Just as we transformed vectors, we can also transform functions:

Basis Vectors {¢,[/]}

Basis Functions {e,(¢)}

Transform
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Inverse

\7 = Zakgk
k

()= ae, (1)
k




The Fourier Transform

Most tasks need an infinite number of basis functions
(frequencies), each with their own weight F(s): Harmonics {e??#"}

Fourier Series Fourier Transform
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The Fourier Transform

To get the weights (amount of each frequency):

F(s)= | f(0)e ™ dt

F(s) 1s the Fourier Transform of f(z): #(f(t)) = F(s)

To convert weights back into a signal (invert the transform):

£(t) = j F(s)e'?™ ds

f(t) is the Inverse Fourier Transform of F(s): #1(F(s)) = f(t)




How to Interpret the Weights F(s)

The weights F(s) are complex numbers:
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Real part How much of a cosine of frequency s you need
Imaginary part How much of a sine of frequency s you need
Magnitude How much of a sinusoid of frequency s you need

Phase What phase that sinusoid needs to be




Euler’s

o Any complex number can be re

Formula

presented using Euler’s formula:

z = |z|le* @ = |z|lcos(¢) + |z|sin(¢)i = a + bi

«— >~ ——>
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Imaginary

a = |z|cos(4)

b =lzlsin(¢)




Magnitude and Phase

Remember: complex numbers can be thought of in two
Ways: (real, imaginary) or (magnitude, phase)

Magnitude: |F|= \/‘.R(F)2 + 3(F)?
R(F)
3(F)

Phase: (F) = arctan

image |F|
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Periodic Signals on a Grid

 Periodic signals with period N:
= Underlying frequencies must also repeat over the period N

« Each component frequency must be a multiple of the
frequency of the periodic signal itself:

1 2 3
N'N' N
o If the signal is discrete:
« Highest frequency is one unit: period repeats after a single sample

« No more than N components

1 2 3 N
N N N N



Discrete Fourier Transform (DFT)

If we treat a discrete signal with N samples as one period of an
Infinite periodic signal, then
—i27st

1 N-1
F[S]=ﬁ D flle /N
t=0

and
[2Tst

N-1
fll= Y. Flsle /¥
s=0

Note: For a periodic function, the discrete Fourier transform is the same as
the continuous transform

= We give up nothing in going from a continuous to a discrete
transform as long as the function is periodic

« Computational complexity: O(N?)



Fast Fourier Transform

developed by Tukey and Cooley in 1965

v - i

the Discrete Fourier Transform can be written

1 N-1
F[S]:W D Wy
t=0

If we let

If N is a multiple of 2, N = 2M for some positive integer M,
substituting 2M for N gives

2M -1

F[S]—— 2 1w
=0



Fast Fourier Transform

Separating even and odd terms:

Fs] zi{iMj 2w+ S 21 WAS;WZM}
2 | M = M 2
Can be written as
F[s]= 1 oven (8) + Fouq (S)WZSM}

We can use this for the first A terms of the Fourier transform of
2M items, then we can re-use these values to compute the last M
terms as follows:

FIs M= {Fone ()~ Fos 6P |



Fast Fourier Transform

If M is itself a multiple of 2, do it again!

If N is a power of 2, recursively subdivide until you have one
element, which is its own Fourier Transform

ComplexSignal FFT(ComplexSignal ) {
1T (length(f) == 1) return T;

M = length(f) 7/ 2;
WM = enr(-I * 2 * P1 / M) /I Acomplex value.

even FFT(EvenTerms(f));
odd FFT(OddTerms(¥));

for (s = 0; s < M; s++) {
result[s ] = even[s] + W 2M*s * odd[s];
result[s+M] = even[s] — W 2M*s * odd[s];
+
}



Fast Fourier Transform

Computational Complexity:

Discrete Fourier Transform > O(N?)

Fast Fourier Transform - O(Nlog N)

Remember: The FFT is just a faster algorithm for computing the DFT — it
does not produce a different result



Impulses

One way of probing what a system does is to test it on a single input
point (a single spike in the signal, a single point of light, etc.)

Mathematically, a perfect single-point input Is written as:

r

o Ifr=0

o(1) =+ _
0 otherwise

\

and "

f o()dt=1

This is called the Dirac a’el;‘afunction



Delta Function and 1ts FT

Spatial Domain

Frequency Domain

S) F(s)
o (1) 1
0 t o s
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Sinusoids

Spatial Domain Frequency Domain
S) F(s)
cos(2max) [ds + @) + s — w)]
Sin(2mwr) V[As + o) - As — w)]i

SR



Constant Functions

Spatial Domain Frequency Domain
S) F(s)
1 o (s)
a a o(s)
O t 0
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Square Pulse

Spatial Domain Frequency Domain

f) F(s)

sin(2zas)

IT () 2a sinc(2as) =

spatial Domain Frequency Domain

Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html



Triangle

Spatial Domain Frequency Domain
S) F(s)
A (?) a sinc?(as)
Ay, (2) 1/2 sinc®(s/ 2)

-1/2 0 112 1 0 S




Comb (Shah) Function

Spatial Domain Frequency Domain
S) F(s)
comb,(¢) = 6 (¢ mod 4) o (t mod 1/4)
0 t th O 1/ S
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Gaussian

(SPATIAL)

SPATIAL DOMAIN - FREQUENCY DOMAIN

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html



2D and 3D FTs

The 2D Fourier Transform is linearly separable: the Fourier Transform
of a 2D image is the 1D Fourier Transform of the rows followed by the 1D
Fourier Transforms of the resulting columns:

N-1 M-1

F[M,V] Z Zf[x y]e—ZZﬂ(ux/N+vy/M)

xOyO
N-1 M-1

Z S fLx, yle 2! NgmizmvIM

xOyO

L ! LSl —i27zux/N_ —i2mvvI M
gZ — 2 fTx e e 12m

Similar for 3D!



FT Properties: Addition Theorem

Adding two functions together adds their Fourier Transforms:

Hf +g) = /) + Hg)

Multiplying a function by a scalar constant multiplies its Fourier
Transform by the same constant:

Haf) = a 1)

Consequence: Fourier Transform is a linear transformation!



FT Properties: Shift Theorem

Translating (shifting) a function leaves the magnitude unchanged
and adds a constant to the phase

It fo8) = f1(t — a)
Fy = )
F, = )
then
[Fo| = |F]

b(Fy) = ¢(F) - 2nsa

Intuition: magnitude tells you “how much”,
phase tells you “where”



FT Properties: Scaling Theorem

Scaling a function’s abscissa (domain or horizontal axis) inversely
scales the both magnitude and abscissa of the Fourier transform.

It fo8) =filat)
Fy = Af)
F, = Afp)
then

Fy(s) = (Ulal) Fy(s [ a)



FT Properties: Rotation

Rotating a 2-D function rotates it’s Fourier Transform

If

f, = rotatey(f;)
= f,(x cos(6) — y sin(0), x sin(B) + y cos(B))

Fy = Hf)
F, = HY)
then
Fy(s) = F,(x cos(8) —y sin(0), x sin(6) + y cos(0))

I.e., the Fourier Transform is rotationally invariant.



Rotation Invariance (sort of)

needs
more
boundary
padding!
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Convolution

)20 = | Fe(t-odz



FT Properties: Convolution Theorem

Convolution
(@) * g(t) <> F(s) G(s)
Correlation

f (1) * g(-0) > F(s) G(s)



FT Properties: Convolution Theorem

Let F, G, and H denote the Fourier Transforms of signals /, g,
and / respectively

g=f) * h() mplies G =F(s) H(s)
g=fY) h()  mplies G =F(s) * H(s)
g=f)* h(-t) implies G=F(s) H (s)
g=f) h(-t)  implies G =F(s)* H(s)

Convolution in one domain is multiplication in the other and vice
versa



Template “Convolution”

*Actually, i1s a correlation method
*Goal: maximize correlation between target and probe image
*Here: only translations allowed but rotations also possible

Maximim

Jext
Example

FOR m
Cross-Correlation

3

target probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Particle Picking

*Use spherical, or rotationally averaged probes
*Goal: maximize correlation between target and probe image

microscope image of latex spheres

g

target probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html



Power Spectrum

The power spectrum of a signal is the Fourier Transform of its
autocorrelation function:

P(s) = ®f(2) * 1(-1))
= F(s) F7(s)
= |F(s)I?
It is also the squared magnitude of the Fourier transform of the
function
It is entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.



Use of Power Spectrum in Filtering

Original with noise patterns Power spectrum showing noise spikes

Mask to remove periodic noise Inverse FT with periodic noise removed

© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html



FT Properties: Rayleigh’s Theorem

Total sum of squares is the same in either domain:

T ‘f(t)‘z dt = T ‘F(S)‘2 ds = T P(s) ds



Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
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Resources

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapter 10
John C. Russ, The Image Processing Handbook, Chapter 5



