
Fourier Theory
Willy Wriggers

School of Health Information Sciences &
Institute of Molecular Medicine
University of Texas – Houston

Frequency Analysis

© http://www.cs.sfu.ca/~hamarneh/courses/cmpt340_04_1© http://www.physics.gatech.edu/gcuo/UltrafastOptics/PhysicalOptics/

Here, we write a square
wave as a sum of sine
waves:

Transforms with Functions
Just as we transformed vectors, we can also transform functions:

Inverse

Transform

Basis Functions {ek(t)}Basis Vectors {ēk[j]}

∑ ⋅=⋅=
j

kkk jejveva][][

∑=
k

kkeav

*() ()k k ka f e f t e t dt
∞

−∞

= ⋅ = ∫

)()(teatf
k

kk∑=

The Fourier Transform
Most tasks need an infinite number of basis functions
(frequencies), each with their own weight F(s): Harmonics {ei2πst}

Inverse

Transform

Fourier TransformFourier Series

∫
∞

∞−

−=

⋅=

dtetf

efsF

sti

sti

π

π

2

2

)(

)(

2() () i stf t F s e dsπ
∞

−∞

= ∫

∫
∞

∞−

−=

⋅=

dtetf

efa

tsi

tsi
k

k

k

π

π

2

2

)(

∑=
k

tsi
k

keatf π2)(

The Fourier Transform
To get the weights (amount of each frequency):F

To convert weights back into a signal (invert the transform):

F(s) is the Fourier Transform of f(t): F(f(t)) = F(s)

f(t) is the Inverse Fourier Transform of F(s): F-1(F(s)) = f(t)

∫
∞

∞−

−= dtetfsF sti π2)()(

∫
∞

∞−

= dsesFtf sti π2)()(

How to Interpret the Weights F(s)
The weights F(s) are complex numbers:

How much of a sinusoid of frequency s you need

What phase that sinusoid needs to be

Magnitude

Phase

How much of a cosine of frequency s you need

How much of a sine of frequency s you need

Real part

Imaginary part

Real

Imaginary

1-1

i

-i

i

Euler’s Formula
• Any complex number can be represented using Euler’s formula:

z = |z|eiφ (z) = |z|cos(φ) + |z|sin(φ)i = a + bi

Real

Imaginary

1
-1

i

-i

b

a
φ

a = |z|cos(φ)
b = |z|sin(φ)

Magnitude and Phase
Remember: complex numbers can be thought of in two
ways: (real, imaginary) or (magnitude, phase)

Magnitude:

Phase:

22)()(FFF ℑ+ℜ=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
ℑ
ℜ

=
)(
)(arctan)(

F
FFφ

© www.dai.ed.ac.uk/HIPR2/ fourier.htm

image |F| ɸ (F)

Periodic Signals on a Grid
• Periodic signals with period N:

Underlying frequencies must also repeat over the period N
Each component frequency must be a multiple of the
frequency of the periodic signal itself:

• If the signal is discrete:
Highest frequency is one unit: period repeats after a single sample

No more than N components

 ,3 ,2 ,1
NNN

N
N

NNN
 ,3 ,2 ,1

Discrete Fourier Transform (DFT)
If we treat a discrete signal with N samples as one period of an
infinite periodic signal, then

and

Note: For a periodic function, the discrete Fourier transform is the same as
the continuous transform

We give up nothing in going from a continuous to a discrete
transform as long as the function is periodic
Computational complexity: O(N2)

∑
−

=

π−
=

1

0

2
][1][

N

t

N
sti

etf
N

sF

∑
−

=

π
=

1

0

2
][][

N

s

N
sti

esFtf

Fast Fourier Transform

If we let

the Discrete Fourier Transform can be written

If N is a multiple of 2, N = 2M for some positive integer M,
substituting 2M for N gives

N
i

N eW
π−

=
2

∑
−

=
⋅=

1

0
][1][

N

t

st
NWtf

N
sF

∑
−

=
⋅=

12

0
2][

2
1][

M

t

st
MWtf

M
sF

developed by Tukey and Cooley in 1965

Fast Fourier Transform

Separating even and odd terms:

Can be written as

We can use this for the first M terms of the Fourier transform of
2M items, then we can re-use these values to compute the last M
terms as follows:

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⋅++⋅= ∑ ∑
−

=

−

=

1

0

1

0
2]12[1]2[1

2
1][

M

t

M

t

s
M

st
M

st
M WWtf

M
Wtf

M
sF

{ }s
Moddeven WsFsFsF 2)()(

2
1][+=

{ }s
Moddeven WsFsFMsF 2)()(

2
1][−=+

Fast Fourier Transform
If M is itself a multiple of 2, do it again!

If N is a power of 2, recursively subdivide until you have one
element, which is its own Fourier Transform

ComplexSignal FFT(ComplexSignal f) {
if (length(f) == 1) return f;

M = length(f) / 2;
W_2M = e^(-I * 2 * Pi / M) // A complex value.

even = FFT(EvenTerms(f));
odd = FFT(OddTerms(f));

for (s = 0; s < M; s++) {
result[s] = even[s] + W_2M^s * odd[s];
result[s+M] = even[s] – W_2M^s * odd[s];

}
}

Fast Fourier Transform
Computational Complexity:

Remember: The FFT is just a faster algorithm for computing the DFT — it
does not produce a different result

O(N log N)Fast Fourier Transform

O(N2)Discrete Fourier Transform

Impulses
One way of probing what a system does is to test it on a single input
point (a single spike in the signal, a single point of light, etc.)

Mathematically, a perfect single-point input is written as:

δ(t) =

and

δ(t)dt = 1

This is called the Dirac delta function

⎧
⎨
⎩

∞ if t = 0
0 otherwise

∞

⌠
⌡
-∞

Delta Function and its FT

1δ (t)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Sinusoids

½[δ(s + ω) + δ(s – ω)]

½[δ(s + ω) - δ(s – ω)]i

cos(2πωt)

sin(2πωt)

Frequency Domain
F(s)

Spatial Domain
f(t)

Constant Functions

δ (s)

a δ (s)

1

a

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Square Pulse

Πa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

sin(2)2 sinc(2) asa as
s
π

π
=

Adapted from http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html

Triangle

a sinc2(as)Λa(t)

Frequency Domain
F(s)

Spatial Domain
f(t)

t0

1/ 2 ()t∆
1

1/2-1/2 s0

21/2 sinc (/ 2)s
0.5

Comb (Shah) Function

δ (t mod 1/h)combh(t) = δ (t mod h)

Frequency Domain
F(s)

Spatial Domain
f(t)

© http://www.cis.rit.edu/htbooks/nmr/chap-5/chap-5.htm

Gaussian

http://www.med.harvard.edu/JPNM/physics/didactics/improc/intro/fourier3.html

()2se π σ−
2t

e
π

σ
⎛ ⎞− ⎜ ⎟
⎝ ⎠

2D and 3D FTs
The 2D Fourier Transform is linearly separable: the Fourier Transform
of a 2D image is the 1D Fourier Transform of the rows followed by the 1D
Fourier Transforms of the resulting columns:

Mvyi
M

y

N

x

Nuxi

Mvyi
N

x

M

y

Nuxi

N

x

M

y

MvyNuxi

eeyxf
NM

eeyxf
NM

eyxf
NM

vuF

/2
1

0

1

0

/2

/2
1

0

1

0

/2

1

0

1

0

)//(2

],[1 1

],[1

],[1],[

ππ

ππ

π

−
−

=

−

=

−

−
−

=

−

=

−

−

=

−

=

+−

∑ ∑

∑ ∑

∑ ∑

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

=

=

Similar for 3D!

FT Properties: Addition Theorem
Adding two functions together adds their Fourier Transforms:

F(f + g) = F(f) + F(g)

Multiplying a function by a scalar constant multiplies its Fourier
Transform by the same constant:

F(a f) = aF(f)

Consequence: Fourier Transform is a linear transformation!

FT Properties: Shift Theorem
Translating (shifting) a function leaves the magnitude unchanged
and adds a constant to the phase

If f2(t) = f1(t – a)

F1 = F(f1)
F2 = F(f2)

then
|F2| = |F1|

φ (F2) = φ (F1) - 2πsa

Intuition: magnitude tells you “how much”,
phase tells you “where”

FT Properties: Scaling Theorem
Scaling a function’s abscissa (domain or horizontal axis) inversely
scales the both magnitude and abscissa of the Fourier transform.

If f2(t) = f1(a t)

F1 = F(f1)
F2 = F(f2)

then
F2(s) = (1/|a|) F1(s / a)

FT Properties: Rotation
Rotating a 2-D function rotates it’s Fourier Transform

If
f2 = rotateθ(f1)

= f1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

F1 = F(f1)

F2 = F(f2)

then
F2(s) = F1(x cos(θ) – y sin(θ), x sin(θ) + y cos(θ))

i.e., the Fourier Transform is rotationally invariant.

Rotation Invariance (sort of)

© http://mail.udlap.mx/~oldwall/docencia/IMAGENES/chapter2/image_232_IS548.html

needs
more
boundary
padding!

Convolution

() () ()f t g t f g t dτ (τ) τ
∞

−∞

∗ = −∫

FT Properties: Convolution Theorem
Convolution

f (t) * g(t) ↔ F(s) G(s)

Correlation

f (t) * g(-t) ↔ F(s) G*(s)

FT Properties: Convolution Theorem
Let F, G, and H denote the Fourier Transforms of signals f, g,
and h respectively

g = f(t) * h(t) implies G = F(s) H(s)

g = f(t) h(t) implies G = F(s) * H(s)

g = f(t) * h(-t) implies G = F(s) H* (s)

g = f(t) h(-t) implies G = F(s) * H*(s)

Convolution in one domain is multiplication in the other and vice
versa

Template “Convolution”

•Actually, is a correlation method
•Goal: maximize correlation between target and probe image
•Here: only translations allowed but rotations also possible

target probe

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html

Particle Picking

•Use spherical, or rotationally averaged probes
•Goal: maximize correlation between target and probe image

target probe

microscope image of latex spheres

© http://www.reindeergraphics.com/tutorial/chap4/fourier11.html

Power Spectrum
The power spectrum of a signal is the Fourier Transform of its
autocorrelation function:

P(s) = F(f (t) * f (-t))

= F(s) F*(s)

= |F(s)|2

It is also the squared magnitude of the Fourier transform of the
function

It is entirely real (no imaginary part).

Useful for detecting periodic patterns / texture in the image.

Use of Power Spectrum in Filtering

Original with noise patterns Power spectrum showing noise spikes

Mask to remove periodic noise Inverse FT with periodic noise removed
© http://www.reindeergraphics.com/tutorial/chap4/fourier13.html

FT Properties: Rayleigh’s Theorem

Total sum of squares is the same in either domain:

2 2() () () f t dt F s ds P s ds
∞ ∞ ∞

−∞ −∞ −∞

= =∫ ∫ ∫

Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University, Dearborn Hall, Corvallis, Oregon, 97331

Resources

Textbooks:
Kenneth R. Castleman, Digital Image Processing, Chapter 10
John C. Russ, The Image Processing Handbook, Chapter 5

