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Protein Dynamics is Hierarchical

@ O

Vibration of bonds: 10 s

Protein folding/unfolding Large-scale functional motions

10°s, 107 s, s and even longer



Collective Coordinates and
Dimensionality Reduction
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Find a Model

* To Investigate low-frequency movement
(vibration)

* To reduce the number of degrees of
freedom



Normal Mode Analysis

® Theory of vibration
® Harmonic potential

® Close to the potential minimum
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® Orthogonal normal modes

® Conformational fluctuation = a superposition of normal modes.



Harmonic Approximation
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Approximation:

Potential energy => harmonic
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Harmonic Oscillator
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Coupled oscillators
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Eigenvalue and Eigenvector Problem
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U Is chosen so that it satisfies the following conditions.
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Matrix Diagonalization
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Conformational Fluctuation

...1s given by a superposition of normal modes:
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Two-Atomic Molecule
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Three-Atomic Molecule
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Multi-Atom Molecule
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Low frequencies -l High frequencies

Large collective motions Localized motions
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Success Story

Flexible
Docking

Darshorel, FHAS) 2002900238 70% overlap between the direction of the

observed displacements with the direction
of mode 1



Success Story

*One mode can represent 70-90% of functionally relevant motion.

*For many observed movements, the first 12 normal modes
contain the relevant degrees of freedom



NMA using Molecular Mechanics

Full atomic representation and MM interactions require:

e energy minimization

e diagonalization of the 2 derivative of the potential energy (3N x 3N
Hessian matrix)



Computational Challenges

NMA requires: Problems for large systems:
» minimization » expensive, cumbersome (MM)
»diagonalization of the » memory requirements

Hessian matrix



Memory-Efficient Diagonalization

DIMB => Diagonalization in mixed basis

(Perahia & Mouawad, 1995, J. Comp. Chem. 19, 241)

Group theory => Use symmetrical properties of viruses

(Roux & Karplus, 1988, Biophys. J, 53, 297; Simonson & Perahia, 1992, Biophys. J., 61, 410; van Vlijmen & Karplus, 2001,
J.Chem. Phys, 115, 691)

RTB => Rotation Translation Blocks method gives approximate low-
frequency NM ( Tama et al. 2000, Proteins: Struc. Funct. Genet., 41, 1)

— block =1 or several residues
ng
— rotation + translation of block => new basis
. — expression of Hessian in this new basis

? — diagonalization of a matrix 6ng*6ng
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Reducing the Number of Variables

Cartesian coordinate space
3N-6 variables are necessary

N : number of atoms

Torsion angle space

Bond angles and bond lengths are fixed, and

only torsion angles are allowed to vary.
Number of variables: ~1/10

© Atsushi Matsumoto



Elastic Network Model

Monique M Tirion (1996) Phys Rev Lett. 77, 1905-1908

Simplified force-field: no MM, already minimized

Possibility to reduce level of detail (up to 1 point for 40 residue)

© Florence Tama



Vector Quantization

Encode data (in 9Rd=3 ) using a finite set {Wj} (j=1,...,k) of codebook vectors.

Delaunayv trianaulation divides 9R* into k Voronoi polyhedra (“receptive fields”):

2

Fig. 3. Partitioning of two-dimensional space (N = 2) into
L =18 cells. All input vectors in celi C; will be quantized as
the code vector y. The shapes of the various celis can be
very different.

Encoding Distortion Error: E = Z m;

Vi—WiG

I (atoms,
voxels)

Linde, Buzo, & Gray (1980): Gradient descent finds nearest local minimum of E.
Martinetz & Schulten (1993): Global search with topology-representing neural nets.



Choice of Cut-off

Example: Adenylate kinase,
214 residues

1 codebook vector = 1 residue
=10-12 A cut-off OK

Reducing number of codebook vectors

= {00 sparse connectivity

Inspect the pair-distance distribution of
codebook vectors and increase cutoff
beyond first peak.

© Florence Tama
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X-ray
structure

|_evel of Detail not
Important

Open-Close

214 codebook
vectors

Projection onto atomic normal modes
~ 1 for the first few modes

!

Low frequency NM are similar to atomic NM

50 codebook
vectors

Models can reproduce functional rearrangements even
at 30A resolution
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Deposition of
Density Map

Application to EM Data

RNA Polymerase, S. Darst et al.




Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of
Density Map

A 4

Vector
Quantization




Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of Vector
Density Map Quantization

A 4
A 4

Choice of Cut-off —




Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of - Vector
Density Map Quantization

A 4

Choice of Cut-off > NMA




Application to EM Data

RNA Polymerase, S. Darst et al.

Deposition of
Density Map

Vector
Quantization

A 4

Choice of Cut-off

NMA

Apply
Displacements




Examples

Ribosome RNA Polymerase




What are the Limitations of NMA (1)?

e We do not know a priori which is the relevant mode,
but the first 12 low-frequency modes are probable
candidates.

e The amplitude of the motion is unknown.

 NMA requires additional standards for parameterization,
l.e. a screening against complementary experimental
data to select the relevant modes and amplitude.

e EXxpert user input / evaluation required

e Not based on first principles of physics (like MD).



Solution 1: Annotation of Modes

(Essam Metwally: emotion.biomachina.org)

Annotation/
Comments

Database Query Results

Mode View:
2D Movie &
Comments
Mode View:
3D Movie

(VRML)



What are the Limitations of NMA (11)?

 Normal modes may break the symmetry of structures due to forced
orthogonalization:

Global representation = Local description of dynamic feature



Local Feature Analysis

(Zhiyong Zhang)

Global modes replaced by 3N LFA highly correlated output functions

S

Sparsification: n “seed atoms” + their neighboring correlated regions

T4 Lysozyme:




Conclusion

Normal mode analysis Is an alternative method to
study dynamics of molecules.

Normal mode analysis does not require trajectory,
working with single structure.

Conformational fluctuation is given by a
superposition of normal modes.

We are using normal mode analysis to refine
small-angle X-ray scattering profiles.
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