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Protein Dynamics is Hierarchical 

Vibration of bonds: 10-15 s

Large-scale functional motionsProtein folding/unfolding

10-6 s, 10-3 s, s and even longer



Collective Coordinates and 
Dimensionality Reduction
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Find a Model

• To investigate low-frequency movement 
(vibration)

• To reduce the number of degrees of 
freedom



Theory of vibration

Harmonic potential 

Close to the potential minimum 

Orthogonal normal modes 

Conformational fluctuation = a superposition of normal modes.

Normal Mode Analysis



Harmonic Approximation
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Harmonic Oscillator

Newton / Hooke
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Matrix Diagonalization

Coupled oscillators
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U is chosen so that it satisfies the following conditions.

Eigenvalue and Eigenvector Problem

Matrix Diagonalization

© Atsushi Matsumoto 



)cos(
1

1
2

)cos(
1
1

2 22
2

11
1

2

1 δωδω +⎟
⎠

⎞
⎜
⎝

⎛
−

++⎟
⎠

⎞
⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
∆
∆

tAtA
x
x

Lower frequency mode

Higher frequency mode

…is given by a superposition of normal modes:

ω1 = k / m

ω2 = 3k / m

Conformational Fluctuation
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Two-Atomic Molecule
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Three-Atomic Molecule
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High frequenciesLow frequencies

Large collective motions Localized motions

Multi-Atom Molecule

© Florence Tama



Success Story



Success Story



Success Story

•One mode can represent 70-90% of functionally relevant motion.

•For many observed movements, the first 12 normal modes 
contain the relevant degrees of freedom



NMA using Molecular Mechanics

Full atomic representation and MM interactions require:

• energy minimization

• diagonalization of the 2nd derivative of the potential energy (3N x 3N
Hessian matrix)



Computational Challenges

NMA requires: Problems for large systems: 

minimization expensive, cumbersome (MM)

diagonalization of the memory requirements

Hessian matrix



Memory-Efficient Diagonalization

DIMB => Diagonalization in mixed basis 
(Perahia & Mouawad, 1995, J. Comp. Chem. 19, 241)

Group theory => Use symmetrical properties of viruses
(Roux & Karplus, 1988, Biophys. J, 53, 297; Simonson & Perahia, 1992, Biophys. J., 61, 410; van Vlijmen & Karplus, 2001, 
J.Chem. Phys, 115, 691)

RTB => Rotation Translation Blocks method gives approximate low-
frequency NM ( Tama et al. 2000, Proteins: Struc. Funct. Genet., 41, 1) 

– block = 1 or several  residues

– rotation + translation of  block => new basis

– expression of Hessian in this new basis

– diagonalization of a matrix  6nB*6nB

© Florence Tama



Cartesian coordinate space
3N-6  variables are necessary
N : number of atoms

Torsion angle space
Bond angles and bond lengths are fixed, and 
only torsion angles are allowed to vary.
Number of variables: ~1/10  

Reducing the Number of Variables

© Atsushi Matsumoto 
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Possibility to reduce level of detail (up to 1 point for 40 residue)

Monique M Tirion (1996) Phys Rev Lett. 77, 1905-1908

Elastic Network Model

Simplified force-field: no MM, already minimized
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Vector Quantization

Linde, Buzo, & Gray (1980): Gradient descent finds nearest local minimum of E.
Martinetz & Schulten (1993): Global search with topology-representing neural nets.

Encode data (in           ) using a finite set            (j=1,…,k) of codebook vectors.{ }jw3=ℜd

Delaunay triangulation divides         into k Voronoi polyhedra (“receptive fields”):3ℜ

i
i

mijiE wv∑ −=

voxels)
(atoms, 

2

)(Encoding Distortion Error:



Choice of Cut-off
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1 codebook vector ≈ 1 residue

10-12 Å cut-off OK

Reducing number of codebook vectors

too sparse connectivity

Inspect the pair-distance distribution of 
codebook vectors and increase cutoff 
beyond first peak. 

214

50

Example: Adenylate kinase, 
214 residues
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X-ray 
structure

214 codebook 
vectors

50 codebook 
vectors

Open-Close

X-ray

Projection onto atomic normal modes                             
≈ 1 for the first few modes

Low frequency NM are similar to atomic NM

Models can reproduce functional rearrangements even 
at 30Å resolution

Level of Detail not 
Important

© Florence Tama



Application to EM Data
RNA Polymerase, S. Darst et al.

Deposition of 
Density Map



Application to EM Data

Deposition of 
Density Map

Vector
Quantization

RNA Polymerase, S. Darst et al.



Application to EM Data

Deposition of 
Density Map

Vector
Quantization Choice of Cut-off

RNA Polymerase, S. Darst et al.



Application to EM Data

Deposition of 
Density Map

Vector
Quantization Choice of Cut-off NMA

RNA Polymerase, S. Darst et al.



Application to EM Data

Deposition of 
Density Map

Vector
Quantization Choice of Cut-off NMA Apply 

Displacements 

RNA Polymerase, S. Darst et al.



Examples

Ribosome RNA Polymerase



• We do not know a priori which is the relevant mode, 
but the first 12 low-frequency modes are probable 
candidates.

• The amplitude of the motion is unknown. 

• NMA requires additional standards for parameterization, 
i.e.  a screening against complementary experimental 
data to select the relevant modes and amplitude. 

• Expert user input / evaluation required

• Not based on first principles of physics (like MD).

What are the Limitations of NMA (I)?



Solution 1: Annotation of Modes
(Essam Metwally: emotion.biomachina.org)

Database Query Results

Mode View:
2D Movie &
Comments

Mode View:
3D Movie
(VRML)

Annotation/
Comments



• Normal modes may break the symmetry of structures due to forced 
orthogonalization:

What are the Limitations of NMA (II)?

Global representation Local description of dynamic feature



Local Feature Analysis

n=4

(Zhiyong Zhang)

Global modes replaced by 3N LFA highly correlated output functions

Sparsification: n “seed atoms” + their neighboring correlated regions

T4 Lysozyme:

109−αC 51−αC 162−αC 1−αC



Conclusion

• Normal mode analysis is an alternative method to 
study dynamics of molecules.

• Normal mode analysis does not require trajectory, 
working with single structure.

• Conformational fluctuation is given by a 
superposition of normal modes.

• We are using normal mode analysis to refine 
small-angle X-ray scattering profiles.
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