

Interactive Multi-Resolution Modeling with Sculptor

Stefan Birmanns
School of Health Information Sciences &
Institute of Molecular Medicine
University of Texas – Houston

Overview

- Sculptor?
- Visualize Volumetric EM Data
- Visualize High-Resolution Structures
- Multi-Resolution Docking

- Interactive multi-resolution modeling
 - Application-driven development:
 - Visualization of volumetric experimental data
 - Visualization of high-resolution structures
 - Interactive and algorithmic docking techniques
- But the focus is not:
 - To develop the best volume renderer
 - To develop the best molecule renderer

Sculptor:

- Qt GUI library
- OpenGL² 3D graphics library
- SVT VR and visualization toolkit
- Multi-platform (Unix, Windows)

- 1) http://www.opengl.org
- 2) http://www.trolltech.com

Context-specific menu

Structure Visualization

High-Quality Rendering

Volumetric Data

- Situs file-format
 - To convert from/to Situs use "map2map" (Situs)
- In context menu of volume document
 - Histogram
 - Direct inspection of density values
 - Normalization

Volumetric Data

- Volume Rendering Techniques:
 - Isosurfaces
 - Conversion to triangle mesh, efficient to render
 - Single parameter, threshold value to define surface
 - EM maps often feature varying resolution and density
 - No precise, hard surface, single threshold difficult
 - Direct Volume Rendering
 - Direct rendering of voxel data
 - Soft surfaces, true transparency, intensity segmentation
 - Complex transfer-function design
 - Real-time rendering challenging

Direct Volume Rendering

Direct rendering of scalar field

3D textures sampled by 2D viewer aligned slices approximate rendering integral

Direct Volume Rendering

Transfer function editor

Resulting color- and opacity spectrum

Color channels are edited separately

Surface Rendering

X//demos/Haptic/2REC20.situs <2> X
Info Isosurface Cross-Sections DVR
Information — — — — — — — — — — — — — — — — — — —
Render Surrounding Box Size X: 39
Size Y: 37
Size Z: 25
Minimum density: 0.000000
Maximum density: 5.216170

- Large macromolecular assemblies
 - Time-consuming to render
 - Visual and haptic rendering compete for CPU time
- Haptic rendering real-time critical
 - Visual dominates haptic rendering
- Load balancing based on mesh simplification
 - Remove detail when force update rate is not sufficient

- Important properties of MS algorithms
 - Quality of the approx. meshes
 - Efficiency of the algorithm

- Simplification techniques
 - Vertex Clustering
 - Vertex Decimation
 - Edge Contraction
- Error metrices

- Edge Contraction with the Quadric Error Metric
 - Fast, produces high quality meshes

 Contract edge and replace it by a single new vertex

Imaginary edges are possible

- Quadric Error Metric
 - Quadratic distance to all corresponding planes of the original mesh

$$Q(v) = \sum_{i=1}^{k} (n_i^t v + d_i)^2 = v^t Q v$$

- Corresponding planes are these from which the vertex results
- Fast because of addition theorem

$$Q(v) = Q_i(v) + Q_j(v) = v^t(Q_i + Q_j)v$$

New vertex is the result of

$$grad(Q(v)) = 0$$

- Special cases
 - open boundaries
 - triangle identity
 - triangle twist

- Simplification is reversible
 - Inverse operation of an edge contraction (a) is a vertex split (b)

Save progressive mesh simplification for later refinement

$$M_n \stackrel{\psi_n}{\rightleftharpoons} M_{n-1} \stackrel{\psi_{n-1}}{\rightleftharpoons} \cdots \stackrel{\psi_2}{\rightleftharpoons} M_1 \stackrel{\psi_1}{\rightleftharpoons} M_0$$

$$\psi_k(M_k) = M_{k-1} \qquad \psi_k^{-1}(M_{k-1}) = M_k \qquad k \in \{1, \dots, n\}$$

$$(\psi_1 \circ \cdots \circ \psi_n)(M_n) = M_0 \qquad (\psi_n^{-1} \circ \cdots \circ \psi_1^{-1})(M_0) = M_n$$

- Adaptable level of detail
 - Adjust the simplification level according to the desired force update rate or frame rate

Algorithm overview

- Compute quadric Q_i for every vertex of the original mesh
- Compute cost (quadric error) and optimal contraction vertex for every edge contraction by minimizing $v^t(Q_i + Q_j)v$
- Sort possible contractions according to cost
- Perform contraction with lowest cost and recompute cost of varied edges and resort them into the cost sorted edge contraction list
- Save the progressive simplification
- Adapt the level of detail corresponding to constraint (FUS, FPS)

Multi-Resolution Modeling

- Interactive docking:
 - Visual docking
 - Manual docking by eye
 - Haptic Rendering
 - Manual docking augmented by force feedback
 - Reduced docking criterion
 - Algorithmic Docking
 - Pattern-recognition technique based on feature points

Transformation

Software "Dials"

Only the activated document is manipulated

Multi-Resolution Docking

- Docking = transformation of structure into density map
- Management of transformations:

Haptic Rendering

- Interactive docking augmented by haptic rendering
 - Guide the user by force-feedback through the 6D search space
 - Cross-correlation as basis for force and torque calculation
 - Combined with advanced virtual reality techniques
 - 3D stereoscopic and tracked visual rendering

Cross-Correlation

 Cross-correlation coefficient between the two objects is a popular docking criterion:

$$C(R,T) \propto \int \rho_{calc}(\mathbf{r},R,T) \cdot \rho_{em}(\mathbf{r}) d^3\mathbf{r}$$

Not time efficient enough for haptic rendering

Feature-Based Shape Description

- Vector Quantization
 - Popular method in signal processing
 - Replace complex function by compact number of feature vectors
 - Topology Representing Networks (Martinez, Schulten)
- Applied to high-resolution structure to reduce complexity of fitting problem:

Feature-Based Shape Description

Haptic Rendering

Correlation-based docking:

$$C(R,T) \propto \int \rho_{calc}(\mathbf{r},R,T) \cdot \rho_{em}(\mathbf{r}) d^3\mathbf{r}$$

Feature points:

$$\rho_{calc}(\mathbf{r}) \equiv \sum_{i=1}^{k} \delta(\mathbf{r} - \mathbf{w_i})$$

Reduced docking criterion:

$$C(R,T) \propto \sum_{i=1}^{k} \rho_{em}(\mathbf{w_i}(R,T))$$

Haptic Rendering

- Correlation-based refinement:
 - Force used in gradient descent refinement technique
 - Highlight umetric data in document list
 - Click on to activate as target map
 - Highlight cture data
 - Çiii on to activate as probe molecule
 - Probe will follow force vector into next local correlation maximum

Laplace Quantization

Laplacian filter applied to low-resolution cryo-EM maps

$$L: \rho(x, y, z) \to \nabla^2 \rho(x, y, z) = \rho^L(x, y, z)$$

Laplace Quantization

Vector Quantization demands remapping:

$$\rho_{\rm c}^L(x,y,z) \to \mathcal{M}(\rho_{\rm c}^L(x,y,z)) \in [0,1]$$

Leads to separate codebooks for contour and interior

$$C^{L}(R,T) = \int \rho_{c}^{L}(R,T) \cdot \rho_{\mathrm{EM}}^{L} d^{3}r$$

$$= \underbrace{\sum_{i=1}^{r} \rho_{\mathrm{EM}}^{L}(w_{i}^{C}(R,T)) - \sum_{i=1}^{s} \rho_{\mathrm{EM}}^{L}(w_{i}^{I}(R,T))}_{\text{contour-match}} - \underbrace{\sum_{i=1}^{s} \rho_{\mathrm{EM}}^{L}(w_{i}^{I}(R,T))}_{\text{interior-match}}$$

Multi-Resolution Fitting

- Determine feature points in 3D structural and volumetric data
 - Point-cloud similarity alternative docking criterion

Point-based Shape Recognition

Feature-based shape description transforms MR-docking into point-cloud matching problem:

$$rmsd(I, \mathbf{R}, \mathbf{T}) = \sqrt{\frac{1}{N} \sum_{j=1}^{N} \left\| (\mathbf{R} \mathbf{w}_{j}^{calc} + \mathbf{T}) - \mathbf{w}_{I(j)}^{em} \right\|^{2}}$$

- NP-Hard
- Methods developed in other research areas
 - Structure alignment
 - Pattern matching
 - Computer vision

Anchor-Point Matching

- Anchor-point refinement matching:
 - Three pairs of anchor points give an initial (rough) transformation

Iterative refinement of initial transformation

Search Tree

Refinement leads to search tree:

- Exploit sparse distribution of feature vectors
 - Compact tree, typical runtime < 1min

Installation Instructions

- Download:
 - http://sculptor.biomachina.org
- Windows:
 - setup.exe standard installer
- Linux:
 - RPM package for Fedora Core Linux:
 - rpm -i qwt-xxxx.rpm
 - rpm -i sculptor-xxxx.rpm
 - Compile your own package for other distributions:
 - rpmbuild -ba sculptor.spec

