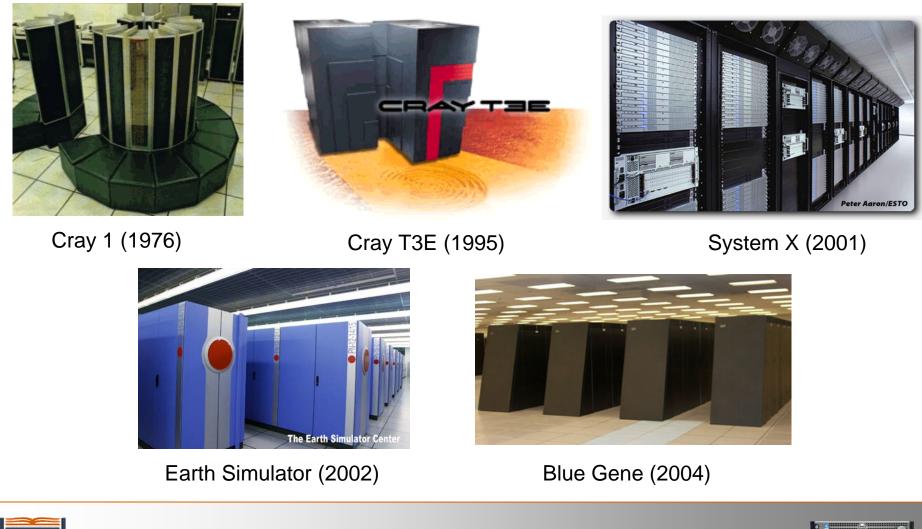

High Performance Computing and Visualization at the School of Health Information Sciences

Stefan Birmanns, Ph.D. Postdoctoral Associate Laboratory for Structural Bioinformatics

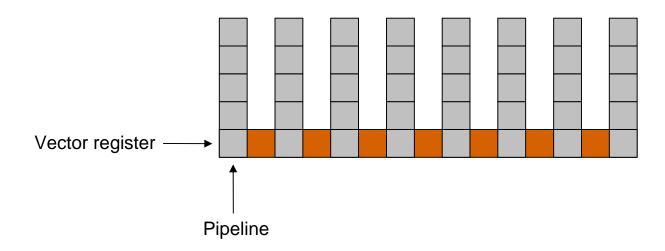
Outline

- High Performance Computing
 - Supercomputer Architectures
 - SHIS Cluster Computer System
 - Applications
- Virtual Reality
 - Virtual Reality / Haptic Rendering
 - SHIS VR system
 - SenSitus


High Performance Computing

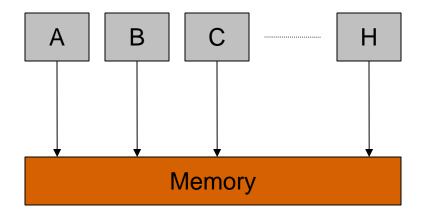
- Definition of "Supercomputer", HPC?
 - Computational facilities substantially more powerful than current desktop computers
- Performance
 - Flop is a floating point operation per second
 - Clock speed
 - Peak performance = Maximal calculation speed of CPU
 - Actual performance depends on application, memory bandwidth, interconnection network, etc.
- Parallelism
 - Multiple calculation units within a CPU, multiple CPUs, etc.
 - Locality of problem

High Performance Computing



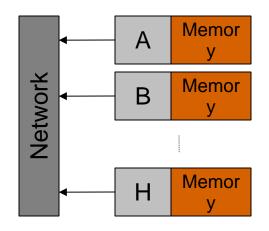
Vectorcomputer

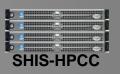
- SIMD parallelism
 - Bandwidth between memory and CPU dramatically increased


- Increases CPU size, only few special vector commands possible
- Easy to adapt existing code, but not all problems benefit of SIMD parallelism
- Expensive

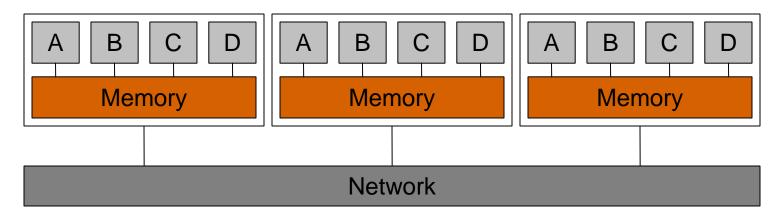
SMP

- Multiprocessor Supercomputers
- Shared memory
 - Multiple CPUs have access to global memory


- Problem: Conflicts when accessing the same memory location
- Fast communication, fast memory access, easy to program
- Complex system architecture, limits the number of CPUs


Distributed Memory HPC

- Distributed memory
 - CPUs have local memory


- Parallelization complicated
- Communication bottleneck
- Advantage:
 - Simple system design,
 - Hardware scales very well in respect of number of CPUs ("massive parallel" systems)

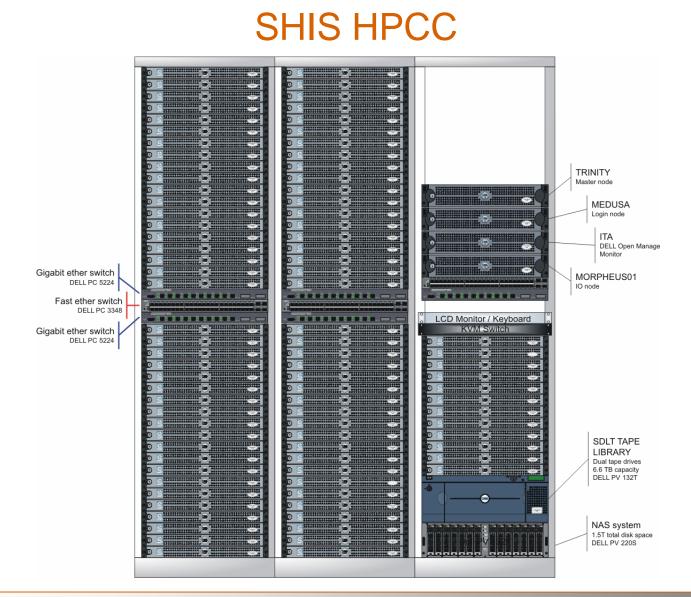
High Performance Computing

- Hybrid designs
 - E.g. cluster systems with SMP nodes

- High CPU count and faster communication but optimization difficult
- Earth Simulator (Japan): 640 nodes
- Nodes: 8 vector processors with shared memory

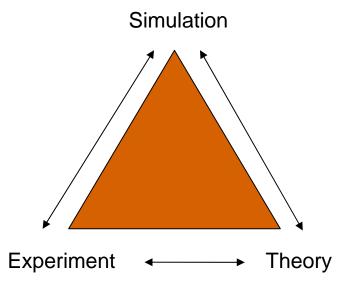
High Performance Computing

- Research areas / trends in HPC:
 - Unlike earlier a lot of HPCs are built using of-the-shelf-hardware
 - Viginia Tech "Big Mac" (1100 Apple Dual G5)
 - PC cluster systems
 - Problems:
 - Space and power consumption, heat
 - Interconnection networks (bandwidth, latency, cpu overhead)
 - Reliability
 - This made HPC affordable for smaller institutions!
 - Performance analysis
 - Why does a program not scale well?
 - What is the "speed" of a supercomputer?
 - Strategies for problem decomposition
 - Make a parallel code scale better
 - GRID
 - Provide transparent access to supercomputer resources


SHIS HPCC

- SHIS Cluster System
 - PC cluster computer with SMP nodes:
 - 90 nodes with 2 Xeon CPUs each (2.8 GHz)
 - CPUs support Hyperthreading
 - 2 GB RAM each node
 - 80 GB HD each node
 - Gigabit ethernet interconnection network
 - 1.5 TB global harddrive space
 - 6.8 TB SDLT tape library
- Performance:
 - 0.59 TFlops
 - 1 TFlops (Peak)

SHIS HPCC


- Software
 - Linux RedHat 9 Operating System
 - Message Passing Interface MPI (MPICH¹ and MPIpro²)
 - Portable Batch System PBSPro³
 - Ganglia Performance Monitor⁴
- SHIS Team
 - HPCC Committee
 - Dr. Jiajie Zhang
 - Support:
 - David Ha

- 1) http://www-unix.mcs.anl.gov/mpi/mpich
- 2) http://www.mpi-softtech.com
- 3) http://www.pbspro.com
- 4) http://ganglia.sourceforge.net

Applications

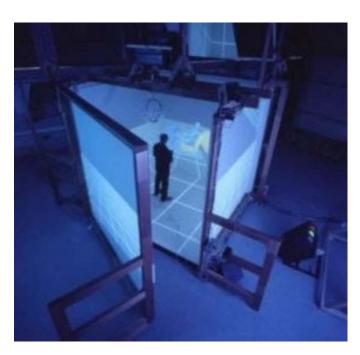
- Simulation
 - Biophysics
 - Meterology
 - Fluid dynamics
 - Finite element calculations
 - Traffic simulations
 - Artificial life

Applications

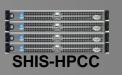
- How to develop applications for a supercomputer?
- Automatic parallelization
- Programming languages
 - Fortran, C, C++
 - Interpreted languages problematic (Java, Python, Perl, ...)
 - Optimization
- Programming model depends on architecture
 - MPI (distributed memory)
 - OpenMP (shared memory)

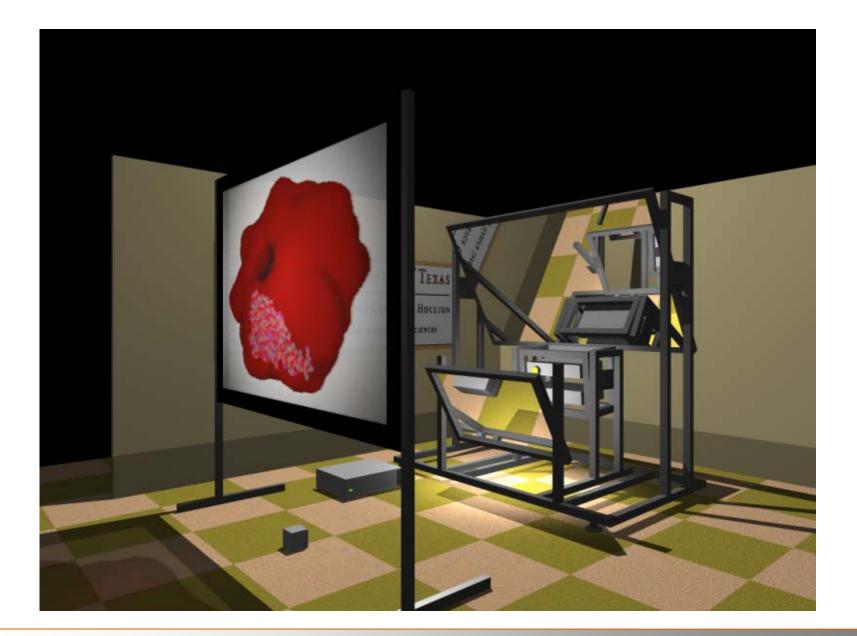
Visualization

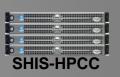
- Visualization essential to analyze data sets from HPC simulations
 - Exploration of datasets
 - Discover
 - Decide
 - Explain
- Online supervision and / or steering of simulations
- Challenges
 - Interactive framerates ~30 FPS
 - Size of datasets is increasing dramatically every year
 - Development of special rendering techniques necessary
 - Network bandwidth limited or latency problems
 - Find useful representations for multidimensional datasets



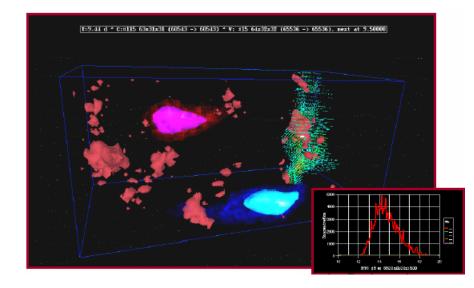
Virtual Reality


- Goal: Interact with virtual objects like with real objects
- VR systems:




SHIS VR System

- Components
 - 2 DLP InFocus LP530 projectors
 - Polarization filters for passive stereo
 - Steward (polarization preserving) screen and mirror system
 - Polhemus Fastrak electro-magnetic position tracker
 - 3 standard sensors and 1 stylus-like sensor
 - Computer system
 - Dual Xeon 3 GHz
 - nVidia Quadro FX 2000
 - 2 GB Ram
 - RedHat / Fedora Core Linux
 - Supports OpenGL and passive stereo


Polhemus Fastrak

Virtual Reality

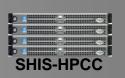

- Steering of supercomputer applications
 - Solute transport in variable saturated porous media
 - Simulation "TRACE"¹ (environmental research)
 - Online supervision of simulation running on massive parallel HPC with TraceVis²
 - Steering: Injection of solute into simulated area during simulation run

http://www.fz-juelich.de/icg/icg4
 http://www.fz-juelich.de/zam

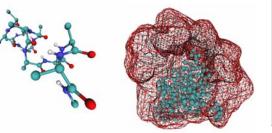
Haptic Rendering

- Haptic Rendering
 - Haptesthai greek "to touch"
 - Create an artificial tactile sensation
- Applications:
 - Experience surface / mass of virtual objects
 - Teleoperation / telerobotics
 - Exploration of multidimensional datasets
- Challenges:
 - Design of haptic devices
 - High temporal bandwidth:
 - ~1000 force updates per second

Haptic Devices



- Sensable Phantom 6DOF
 - Original device developed at the MIT
 - Indirect haptic device
 - Translational forces and torques
 - 6D position / orientation sensors

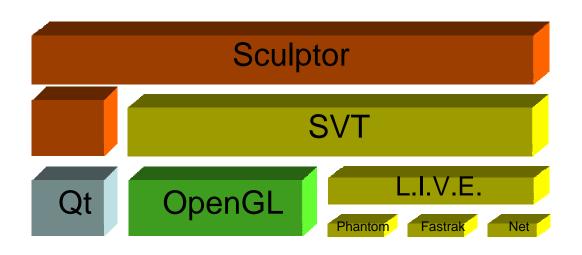



Sculptor

Sculptor

- Interactive multiresolution fitting by haptic rendering
- Visualization of biophysical datasets
- Support of VR systems
- Research funded by: Human Frontier Science Program
 - UTH/SHIS Laboratories for Biocomputing and Imaging
 - Willy Wriggers (USA)
 - School of Science and Engineering
 - Takeyuki Wakabayashi (Japan)
 - CRNS, Laboratoire de Genetique des Virus
 - Jorge Navaza (France)
 - RCJ, John von Neumann Institute for Computing
 - Herwig Zilken (Germany)

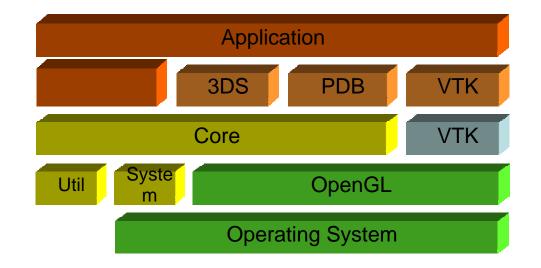
sculptor.biomachina.org



C:/cvs/stefan/win32-msvc/data/SenSitus. ? X Info Graphics Graphics Mode Type Atoms: • • SenSitus _ 🗆 🗙 <u>File V</u>iew F<u>o</u>rce Feedback <u>V</u>olume <u>H</u>elp 🖻 🖬 🛛 🖉 🕰 🖉 😮 💿 👁 Sensitus Scene **`_** 👁 C:/cvs/stefan/win32-msvc/data/SenSitus/2REC/2 ✐♠ x/s/stefan/win32-msvc/data/SenSitus/2RE F Add Delete Properties FPS: 59 FUS: 380

Sculptor

- Sculptor:


 - Qt¹ GUI library
 OpenGL² 3D graphics library
 - SVT Underlying VR and visualization toolkit —
 - Multiplatform (Linux, SGI, Windows) _

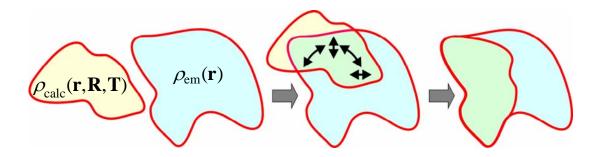
1) http://www.opengl.org 2) http://www.trolltech.com

Sculptor

- SVT:
 - Multi-Display VR environments
 - No dependencies to other libraries
 - Encapsulation of all system dependent calls

Interactive Multi-Resolution Fitting

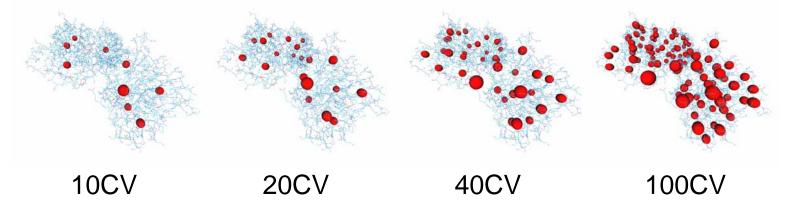
- Fitting of high-resolution crystal structures into low resolution electron density maps
 - High-resolution molecular structures obtained by x-ray crystallography
 - Low-resolution electron microscopy volumetric maps
- New interactive fitting approach using haptic rendering
- Force calculation
 - Gradient of the cross correlation coefficient
 - Guide user to better fitting location



Interactive Multi-Resolution Fitting

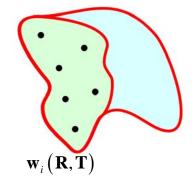
Cross correlation coefficient

$$C(R,T) \propto \int \rho_{calc}(\mathbf{r},R,T) \cdot \rho_{em}(\mathbf{r}) d^3\mathbf{r}$$


• Problem: Not time efficient enough

Reduced Fitting Criterion Vector Quantization

- Vector Quantization
 - Popular method in signal processing
 - Replace complex function by small number of feature vectors
 - Topology Representing Networks (Martinez, Schulten)
- Applied to high-resolution structure to reduce complexity of fitting problem:



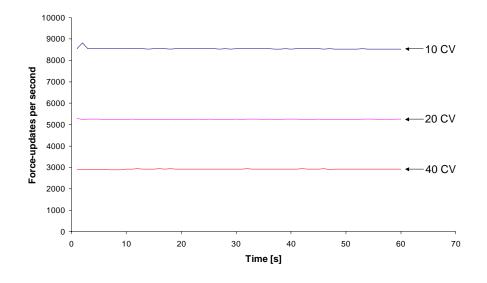
Reduced Fitting Criterion Cross Correlation

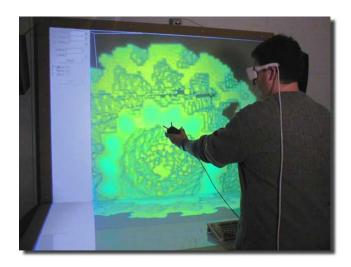
• Replace complex crystal structure by feature vectors

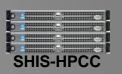
$$\rho_{calc}(\mathbf{r}) \equiv \sum_{i=1}^k \delta(\mathbf{r} - \mathbf{w_i})$$

Reduced cross correlation criterion:

$$C(R,T) \propto \sum_{i=1}^{k} \rho_{em}(\mathbf{w_i}(R,T))$$


• Reduced criterion is time efficient enough for haptic rendering




Reduced Fitting Criterion Cross Correlation

 By using this reduced fitting criterion we were able to achieve update frequencies >1KHz

