
Convolution, Noise and Filters

T H E U N I V E R S I T Y of T E X A S

Philip Baldwin, Ph.D.
Department of Biochemistry

Response to an Entire Signal
The response of a system with impulse response h(t) to input x(t)
is simply the convolution of x(t) and h(t):

ττ)(τ dthxthtxtytx ∫
∞

∞−

−=∗=→)()()()()(

One Way to Think of Convolution

Think of it this way:
Shift a copy of h to each position t (or discrete position k)

Multiply by the value at that position x(t) (or discrete sample x[k])

Add shifted, multiplied copies for all t (or discrete k)

∑ −⋅=∗
k

kjhkxjhjx][][][][

ττ)(τ dthxthtx ∫
∞

∞−

−=∗)()()(

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [__ __ __ __ __ __ __ __ __]
x[1] h[j – 1] = [__ __ __ __ __ __ __ __ __]
x[2] h[j – 2] = [__ __ __ __ __ __ __ __ __]
x[3] h[j – 3] = [__ __ __ __ __ __ __ __ __]
x[4] h[j – 4] = [__ __ __ __ __ __ __ __ __]

x[j] * h[j] = x[k] h[j – k]

= [__ __ __ __ __ __ __ __ __]

Σ
k

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [1 2 3 4 5 __ __ __ __]
x[1] h[j – 1] = [__ __ __ __ __ __ __ __ __]
x[2] h[j – 2] = [__ __ __ __ __ __ __ __ __]
x[3] h[j – 3] = [__ __ __ __ __ __ __ __ __]
x[4] h[j – 4] = [__ __ __ __ __ __ __ __ __]

x[j] * h[j] = x[k] h[j – k]

= [__ __ __ __ __ __ __ __ __]

Σ
k

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [1 2 3 4 5 __ __ __ __]
x[1] h[j – 1] = [__ 4 8 12 16 20 __ __ __]
x[2] h[j – 2] = [__ __ __ __ __ __ __ __ __]
x[3] h[j – 3] = [__ __ __ __ __ __ __ __ __]
x[4] h[j – 4] = [__ __ __ __ __ __ __ __ __]

x[j] * h[j] = x[k] h[j – k]

= [__ __ __ __ __ __ __ __ __]

Σ
k

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [1 2 3 4 5 __ __ __ __]
x[1] h[j – 1] = [__ 4 8 12 16 20 __ __ __]
x[2] h[j – 2] = [__ __ 3 6 9 12 15 __ __]
x[3] h[j – 3] = [__ __ __ __ __ __ __ __ __]
x[4] h[j – 4] = [__ __ __ __ __ __ __ __ __]

x[j] * h[j] = x[k] h[j – k]

= [__ __ __ __ __ __ __ __ __]

Σ
k

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [1 2 3 4 5 __ __ __ __]
x[1] h[j – 1] = [__ 4 8 12 16 20 __ __ __]
x[2] h[j – 2] = [__ __ 3 6 9 12 15 __ __]
x[3] h[j – 3] = [__ __ __ 1 2 3 4 5 __]
x[4] h[j – 4] = [__ __ __ __ __ __ __ __ __]

x[j] * h[j] = x[k] h[j – k]

= [__ __ __ __ __ __ __ __ __]

Σ
k

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [1 2 3 4 5 __ __ __ __]
x[1] h[j – 1] = [__ 4 8 12 16 20 __ __ __]
x[2] h[j – 2] = [__ __ 3 6 9 12 15 __ __]
x[3] h[j – 3] = [__ __ __ 1 2 3 4 5 __]
x[4] h[j – 4] = [__ __ __ __ 2 4 6 8 10]

x[j] * h[j] = x[k] h[j – k]

= [__ __ __ __ __ __ __ __ __]

Σ
k

Example: Convolution
x[j] = [1 4 3 1 2]
h[j] = [1 2 3 4 5]

x[0] h[j – 0] = [1 2 3 4 5 __ __ __ __]
x[1] h[j – 1] = [__ 4 8 12 16 20 __ __ __]
x[2] h[j – 2] = [__ __ 3 6 9 12 15 __ __]
x[3] h[j – 3] = [__ __ __ 1 2 3 4 5 __]
x[4] h[j – 4] = [__ __ __ __ 2 4 6 8 10]

x[j] * h[j] = x[k] h[j – k]

= [1 6 14 23 34 39 25 13 10]

Σ
k

Example: Two-Dimensional Convolution

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

____ ____ ____ ____ ____ ____

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2

1 1 1
* 1 2 1 =

1 1 1

Example: Two-Dimensional Convolution

1 2 4 5 4 2

2 5 9 12 10 4

3 7 13 17 14 6

3 7 13 17 14 6

2 5 9 12 10 4

1 2 4 5 4 2

1 1 2 2
1 1 2 2
1 1 2 2
1 1 2 2

1 1 1
* 1 2 1 =

1 1 1

Properties of Convolution

• Commutative: f * g = g * f

• Associative: f * (g * h) = (f * g) * h

• Distributive over addition: f * (g + h) = f * g + f * h

• Derivative:

Convolution has the same mathematical properties as
multiplication
(This is no coincidence, see Fourier convolution theorem!)

()d f g f g f g
dt

′ ′∗ = ∗ + ∗

Gaussian

Gaussian: maximum value = 1

Normalized Gaussian: area = 1

Convolving a Gaussian with another:

-σ σ

1

-σ σ

1

2
22(,)

t
G t e σσ

−
=

2
221(,)

2

t
G t e σσ

πσ
−

=

),(),(),(2
2

2
121 σσσσ +=∗ tGtGtG

image

+

noise

=

‘grainy’
image

©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4_02

What is Noise?

What is Noise?
• Anything that is NOT signal:

Signal is what carries information
that we are interested in
Noise is anything else

• Noise may be
Completely random (both
spatially and temporally)
Structured
Structured randomness

50 100 150 200 250

100

200

300

50 100 150 200 250

-100

0

100

50 100 150 200 250
0

100

200

300

©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4_02

Statistical Review
Mean: The average or expected value

Variance: The expected value of the squared error

Standard Deviation: The square root of the variance

∑== x
N

xEµ 1}{

2 2 2 2{() } { }σ E x µ E x µ= − = −

2σσ =

Ensembles of Images
Consider the picture Ĩ(x) as a random variable from which we
sample an ensemble of images from the space of all possibilities

This ensemble (or collection) of images has a mean (average) image,
Ī(x)

If we sample enough images, the ensemble mean approaches the
noise-free original signal

Often not feasible

Signal-To-Noise Ratio
If we compare the strength of a signal or image (the mean of the
ensemble) to the variance between individual acquired images we
get a signal-to-noise ratio:

The better (higher) the SNR, the better our ability to discern the
signal information

Problem: How to measure m to compute the SNR?

σ
µ

=SNR

Noise and the Frequency Domain
Noisy input:

Ĩ(x) = Ī(x) + ñ(x)

Spectrum of noisy input:

F(Ĩ(x)) = F(Ī(x)) + F(ñ(x))

White noise has equally random amounts of all frequencies

“Colored” noise has unequal amount for different frequencies

Since signals often have more low frequencies than high, the effect of
white noise is usually greatest for high frequencies

Filters

Low pass filter
- eliminate high frequencies and leave the low frequencies.

High pass filter
- eliminate low frequencies and leave high frequencies.

Band pass filter
- only a limited range of frequencies remains

Gaussian smoothing
- has the effect of cutting off the high frequency components of the

frequency spectrum

Low-Pass Filter
• Recall that quick changes in a signal/image require high

frequencies

• High frequency details are often “buried” in noise, which also
requires high frequencies

• One method of reducing noise is pixel averaging:
Average same pixel over multiple images of same scene
Average multiple (neighboring) pixels in single image

Convolution Filtering: Averaging

Can use a square function (“box filter”) or Gaussian to locally
average the signal/image

Square (box) function: uniform averaging
Gaussian: center-weighted averaging

Both of these blur the signal or image

Low-Pass Filtering = Spatial Blurring
Low-pass filtering and spatial blurring are the same thing

Any convolution kernel with all positive (or all negative)
weights does:

Weighted averaging
Spatial blurring
Low-pass filtering

They are all equivalent

Filtering and Convolution
Two ways to think of general filtering:

Spatial: Convolution by some spatial-domain kernel

Frequency: Multiplication by some frequency-domain filter

Can implement/analyze either way

Low-Pass Filtering
Tradeoff:

Reduces Noise
but

Blurs Image

The worse the noise, the more you need to blur to remove it

Original After Low-
pass filtering

©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4_02

“Ideal” Low-Pass Filtering
For cutoff frequency uc:

What is the corresponding convolution kernel?

What problem does this cause?

What could you do differently?

⎪⎩

⎪
⎨
⎧ ≤

=Π=
otherwise 0

 if 1
)/()(c

c
uu

uuuH

Better (Smoother) Low-Pass Filtering
Gentler ways of cutting off high frequencies:

Hanning

Gaussian

Butterworth

n controls the sharpness of the cutoff

0 5 0 5cos / if
() 2

 0 otherwise

c c
π. . (u u) u u

H u
⎧ + ≤⎪= ⎨
⎪⎩

2
2

2)(cu
u

euH
−

=

n

cu
u

uH

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

=

2
2

1

1)(

Sharpening
• Blurring is low-pass filtering, so de-blurring is high-pass

filtering:
Explicit high-pass filtering
Unsharp Masking
Deconvolution
Edge Detection

• Tradeoff:
Reduces Blur
but

Increases Noise

High-Pass Filtering
• “Ideal”:

• Flipped Butterworth:

⎪⎩

⎪
⎨
⎧ ≤

=Π−=
otherwise 1

 if 0
)/(1)(c

c
uu

uuuH

n
cuu

uH
)/(1

11)(22+
−=

High-Pass Filtering vs. Low-Pass Filtering

©exchange.manifold.net/manifold/manuals/5_userman/mfd50Image__Filter.htm

Original

After Low-pass filtering

After High-pass filtering

Convolution Filtering: Unsharp Masking
Unsharp masking is a technique for high-boost filtering. To
sharpen a signal/image, subtract a little bit of the blurred input.

Procedure:
Blur the image.
Subtract from the original.
Multiply by some weighting factor.
Add back to the original.

I′ = I + α(I – I * g)

where I′ is the original image, g is the smoothing (blurring)
kernel, and I is the final (sharpened) image

Unsharp Masking: Implementation

I + α(I – I * g)

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

α−α−α−
α−α+α−
α−α−α−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
α+

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

89
9
1

111
111
111

000
090
000

000
090
000

9
1

Unsharp Masking Image

Original Image After Unsharp Masking

©www.luminous-landscape.com/tutorials/understanding-series/understanding-usm.shtml

Deconvolution
If we want to “undo” low-pass filter H(u),

Problem 1: This assumes you know the point-spread function
Problem 2: H may have had small values at high frequencies, so Hinv has

large values (multipliers)

Small errors (noise, round-off, quantization, etc.) can get magnified
greatly, especially at high frequencies

This is a common problem for all high-pass methods

)(
1)(uHuHinv =

Example: Deconvolution

Before deconvolution After deconvolution

©www.reindeergraphics.com/tutorial/chap4/fourier12.html

Early Hubble space telescope image with precisely known optical aberrations

Band-Pass Filtering
Tradeoff: Blurring vs. Noise

Low-Pass: reduces noise but accentuates blurring
High-Pass: reduces blurring but accentuates noise

A compromise:
Band-pass filtering boosts certain midrange frequencies and partially
corrects for blurring, but does not boost the very high (most noise
corrupted) frequencies

Band-Pass Filtering vs. Low-Pass, High-Pass Filtering

Original Image

After Low-pass filter After High-pass filter After Band-pass filter

©astronomy.swin.edu.au/~pbourke/analysis/imagefilter/

Median “Filtering”
Instead of a local neighborhood weighted average, compute the
median of the neighborhood

• Advantages:
Removes noise like low-pass filtering does
Value is from actual image values
Removes outliers – doesn’t average (blur) them into result (“despeckling”)
Edge preserving

• Disadvantages:
Not linear
Not shift invariant
Slower to compute

Median “Filtering”

©John C. Russ
Removal of shot noise with a median filter

Original image

Image a with 10% of the
pixels randomly
selected and set to
black, and another 10%
randomly selected and
set to white

Application of
median filtering
to image b
using a 3x3
square region

Application of
median filtering to
image b using a 5x5
square region

Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
© 2003 School of Electrical Engineering and Computer Science, Oregon State University. Dearborn, Corvallis, Oregon, 97331

Resources

Textbook:
Kenneth R. Castleman, Digital Image Processing, Chapter 11

