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Response to an Entire Signal

The response of a system with impulse response 4(¢) to input x(¢)
IS simply the convolution of x(¢) and A(?):

o0

x(6) > () = x(O) *h(t) = [ x(2)h(t—7)d7

—00



One Way to Think of Convolution

o0

x(£) * h(f) = j x(D)h(t-1)dr

—00

x[ 1% h[j1= D x[k]-hlj — k]
Think of it this way: g
= Shift a copy of / to each position ¢ (or discrete position k)

= Multiply by the value at that position x(7) (or discrete sample x[])
= Add shifted, multiplied copies for all 7 (or discrete k)
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Example: Convolution

=[ 1 4 3 1 2 ]
=[ 1 2 3 4 5 ]
= x[k] h[j -]
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Example: Convolution

1=1 1 4 3 1 2 ]
Ml=[ 1 2 3 4 5 ]

0]A[j-0] =[ 1 2 3 4 5

1] alj-1] =

2] hlj-2] =

3] Alj-3] =

4 hlj-4] =

xUl=hl] = x[k] Alj - 4]
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Example: Convolution

Xl =1 1 4 3 1 2 ]
Ail=[ 1 2 3 4 5 ]

0]A[j-01=[ 1 2 3 4 5

]a-11 = [ _ 8 12 16 20

2] hlj-2] =

3] Al -3] =

4] hlj—4] =

xl=hl] = x[k] Alj - 4]

1
—




SR T VI

Example: Convolution

Xfl=1 1 4 3 1 2 ]
Al =1 1 2 3 4 5 ]

0] A[i-01 =[ 1 2 3 4 5

1 Al-1] = [ _ 8 12 16 20

2lhi-21=[ _ __ 3 6 9 12 15 __

3] alj-3] =

4] nli-4] =

X1+ Abl = kAl - A

1
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Example: Convolution
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x[k] Alj = K]
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Example: Convolution

1= 1 4 3 1 2 ]
Ml=1 1 2 3 4 5 ]

0]A[j-0] =[ 1 2 3 4 5

1 A[j-1] = _ 4 8 12 16 20
21hj-21=[ _ _ 3 6 9 12 15
3] A[j-3] = [ 1 2 3 4 5
4 h[j-4] = [ 2 4 6 8

xlj1 = Al = x[k] hlj - K]
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Example: Convolution
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4 3 1 2 ]

2 3 4 5 ]

2 3 4 5
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1 2 3 4 5

2 4 6 8

x[k] Alj = K]
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Example: Two-Dimensional Convolution

1 1 2 2
1 1 1
1 1 2 2
* 1 2 1 =
1 1 2 2
1 1 1
1 1 2 2




Example: Two-Dimensional Convolution
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Properties of Convolution

e Commutative: f* g=g* f
o Associative: f* (g * h) = (f*g) * h
 Distributive over addition: f* (g+ h) =f* g+ f*h

e Derivative: di(f*g):f'*ngf*g’
5

Convolution has the same mathematical properties as
multiplication

(This 1s no coincidence, see Fourier convolution theorem!)



Gaussian

Gaussian: maximum value = 1
_t7

2

Glt,o)=e /2

Normalized Gaussian: area =1

G(t’ O') — \/%O- Q_AO'Z

Convolving a Gaussian with another:

-O O

G(t,o0)*G(t,0,) =G(¢, \/012 +0%)



What 1s Noise?

noise ‘grainy’
Image

©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4 02



What is Noise?
o Anything that is NOT signal:

300

= Signal 1s what carries information | | | | |
- - 200+ ]
that we are interested in 1OONWMWW
= Noise Is anything else T e
* Noise may be o *
OB vt M g e b, A Pty
« Completely random (both al |
spatially and temporally) % w w m
30 ‘ ‘ ‘ ‘ ‘
= Structured 0
« Structured randomness il
’ E;O 160 1\‘50 2(30 2%0
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Statistical Review

Mean: The average or expected value
1
u=FE{x}=—> x
2
Variance: The expected value of the squared error

o° = E{(x— )"} = E{x"}— 1’

Standard Deviation: The square root of the variance

_/2
O—=—YV\VO



Ensembles of Images

Consider the picture /(x) as a random variable from which we
sample an ensemble of images from the space of all possibilities

This ensemble (or collection) of images has a mean (average) image,
1(x)
If we sample enough images, the ensemble mean approaches the

noise-free original signal
= Often not feasible



Signal-To-Noise Ratio

If we compare the strength of a signal or image (the mean of the
ensemble) to the variance between individual acquired images we

get a signal-to-noise ratio:

SNR =1

@)

The better (higher) the SNR, the better our ability to discern the
signal information

Problem: How to measure m to compute the SNR?



Noise and the Frequency Domain
Noisy Input:
1(x) = I(x) + 7i(x)
Spectrum of noisy input:

H[(x)) = HU(x)) + Fi(x))

= White noise has equally random amounts of all frequencies
= “Colored” noise has unequal amount for different frequencies

= Since signals often have more low frequencies than high, the effect of
white noise is usually greatest for high frequencies



Filters

= Low pass filter

- eliminate high frequencies and leave the low frequencies.
« High pass filter

- eliminate low frequencies and leave high frequencies.

= Band pass filter

- only a limited range of frequencies remains

= Gaussian smoothing

- has the effect of cutting off the high frequency components of the
frequency spectrum



_ow-Pass Filter

 Recall that quick changes in a signal/image require high
frequencies

« High frequency details are often “buried” in noise, which also
requires high frequencies

« One method of reducing noise is pixel averaging:
= Average same pixel over multiple images of same scene
= Average multiple (neighboring) pixels in single image



Convolution Filtering: Averaging

Can use a square function (“box filter”) or Gaussian to locally
average the signal/image

= Square (box) function: uniform averaging
= Gaussian: center-weighted averaging

Both of these blur the signal or image



Low-Pass Filtering = Spatial Blurring

Low-pass filtering and spatial blurring are the same thing

Any convolution kernel with all positive (or all negative)

weights does:
= Weighted averaging
= Spatial blurring
= Low-pass filtering

They are all equivalent



Filtering and Convolution

Two ways to think of general filtering:
= Spatial: Convolution by some spatial-domain kernel

« Frequency: Multiplication by some frequency-domain filter

Can implement/analyze either way



Low-Pass Filtering
Tradeoff:

Reduces Noise
but

Blurs Image

The worse the noise, the more vou need to blur to remove It

After Low-
pass filtering

Original

©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4 02



“Ideal” Low-Pass Filtering

For cutoff frequency u.:

1 if |u| <u,

Hu)=Il(ulu_.)=- _
0 otherwise

What is the corresponding convolution kernel?
What problem does this cause?

What could you do differently?



Better (Smoother) Low-Pass Filtering

Gentler ways of cutting off high frequencies:

= Hanning ( -
0.5+0.5cos(=ulu, ) if |u|<u,
H(u) =+ 2
0 otherwise
= Gaussian ,
i
Hu)=e /%
= Butterworth
1

H(u) =

(%)

n controls the sharpness of the cutoff



Sharpening

 Blurring is low-pass filtering, so de-blurring is high-pass
filtering:
« Explicit high-pass filtering
= Unsharp Masking
= Deconvolution
= Edge Detection

e Tradeoff:

= Reduces Blur
but
= |Increases Noise



High-Pass Filtering

e “Ideal’:

0 if ‘u‘ <u,
H(u)=1-Tl(u/u,) =+

\1 otherwise

 Flipped Butterworth:

1
2 1. 2\n
1+ W lu?)

H(u)=1-



High-Pass Filtering vs. Low-Pass Filtering

Original

i‘

©exchange.manifold.net/manifold/manuals/5_userman/mfd50Image__Filter.htm After Hi g h -pass filteri ng



Convolution Filtering: Unsharp Masking

Unsharp masking is a technique for high-boost filtering. To
sharpen a signal/image, subtract a little bit of the blurred input.

Procedure:
« Blur the image.
= Subtract from the original.
= Multiply by some weighting factor.
« Add back to the original.

I'=1+a(-1%g)

where /”1s the original image, g Is the smoothing (blurring)
kernel, and 7 is the final (sharpened) image



Unsharp Masking: Implementation

I+o(l-1%g)
0 0 o] (fo o o] [1 1 1
0 9 Ol+al|0 9 0]—|1 1 1
00 0] ([000] 111
_—OL — Ol —OL_
1
=§ —a 9+8a —o
_—OL — Ol —OL_




Unsharp Masking Image

Original Image After Unsharp Masking

©www.luminous-landscape.com/tutorials/understanding-series/understanding-usm.shtml



Deconvolution

If we want to “undo” low-pass filter H(u),

Hj,, (u) = %(u)

Problem 1.  This assumes you know the point-spread function

Problem 2: A may have had small values at high frequencies, so H,, has
large values (multipliers)

Small errors (noise, round-off, quantization, etc.) can get magnified
greatly, especially at high frequencies

This i1s a common problem for all high-pass methods



Example: Deconvolution

Early Hubble space telescope image with precisely known optical aberrations

Before deconvolution After deconvolution

©www.reindeergraphics.com/tutorial/chap4/fourier12.html



Band-Pass Filtering

Tradeoff: Blurring vs. Noise
« Low-Pass: reduces noise but accentuates blurring
= High-Pass: reduces blurring but accentuates noise

A compromise:

Band-pass filtering boosts certain midrange frequencies and partially
corrects for blurring, but does not boost the very high (most noise
corrupted) frequencies



Band-Pass Filtering vs. Low-Pass, High-Pass Filtering

Original Image

After Low-pass filter After High-pass filter Atfter Band-pass filter

©astronomy.swin.edu.au/~pbourke/analysis/imagefilter/



Median “Filtering”

Instead of a local neighborhood weighted average, compute the
median 0of the neighborhood

« Advantages:
= Removes noise like low-pass filtering does
= Value is from actual image values
= Removes outliers — doesn’t average (blur) them into result (“despeckling”)
= Edge preserving
 Disadvantages:
= Not linear

= Not shift invariant
= Slower to compute



Median “Filtering”

Original image

Application of
median filtering
to image b
using a 3x3
square region

Removal of shot noise with a median filter

Image a with 10% of the
pixels randomly
selected and set to
black, and another 10%
randomly selected and
set to white

Application of
median filtering to
image b using a 5x5
square region

©John C. Russ



Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in
agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519
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Resources

Textbook:
Kenneth R. Castleman, Digital Image Processing, Chapter 11



