

THE UNIVERSITY of TEXAS

Convolution, Noise and Filters

Philip Baldwin, Ph.D. Department of Biochemistry

Response to an Entire Signal

The response of a system with impulse response h(t) to input x(t) is simply the convolution of x(t) and h(t):

$$x(t) \to y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

One Way to Think of Convolution

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t-\tau)d\tau$$

$$x[j] * h[j] = \sum_{k} x[k] \cdot h[j-k]$$

Think of it this way:

- Shift a copy of *h* to each position *t* (or discrete position *k*)
- Multiply by the value at that position x(t) (or discrete sample x[k])
- Add shifted, multiplied copies for all *t* (or discrete *k*)

x[j] = [1 4 3 1 2]h[j] = [1 2 3 4 5]

x[0] h[j-0] = []
x[1] h[j-1] = [_]
x[2] h[j-2] = [_]
x[3] h[j-3] = [_]
x[4] h[j-4] = [_]

x[j] = [1 4 3 1 2]h[j] = [1 2 3 4 5]

 $x[j] = \begin{bmatrix} 1 & 4 & 3 & 1 & 2 \end{bmatrix}$ $h[j] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

$$= \begin{bmatrix} _ _ _ _ _ _ _ _ _ _ _ _ _]$$

$$\sum_{k}$$

 $x[j] = \begin{bmatrix} 1 & 4 & 3 & 1 & 2 \end{bmatrix}$ $h[j] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

$$= \begin{bmatrix} _ _ _ _ _ _ _ _ _ _ _ _ _ _]$$

$$\sum_{k}$$

 $x[j] = \begin{bmatrix} 1 & 4 & 3 & 1 & 2 \end{bmatrix}$ $h[j] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

$$= \begin{bmatrix} _ _ _ _ _ _ _ _ _ _ _ _]$$

$$\sum_{k}$$

 $x[j] = \begin{bmatrix} 1 & 4 & 3 & 1 & 2 \end{bmatrix}$ $h[j] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

 $x[0] h[j-0] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & _ & _ & _ & _ &] \\ x[1] h[j-1] = \begin{bmatrix} & 4 & 8 & 12 & 16 & 20 & _ & _ &] \\ x[2] h[j-2] = \begin{bmatrix} & _ & 3 & 6 & 9 & 12 & 15 & _ & _ &] \\ x[3] h[j-3] = \begin{bmatrix} & _ & _ & 1 & 2 & 3 & 4 & 5 & _ &] \\ x[4] h[j-4] = \begin{bmatrix} & _ & _ & _ & 2 & 4 & 6 & 8 & 10 &] \end{bmatrix}$

$$= \begin{bmatrix} _ _ _ _ _ _ _ _ _ _ _ _ _]$$

$$\sum_{k}$$

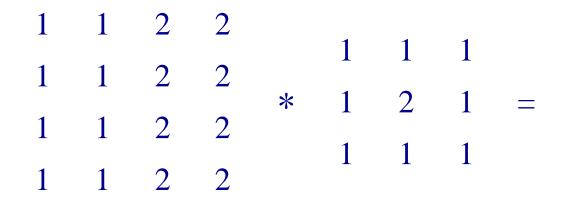
 $x[j] = \begin{bmatrix} 1 & 4 & 3 & 1 & 2 \end{bmatrix}$ $h[j] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$

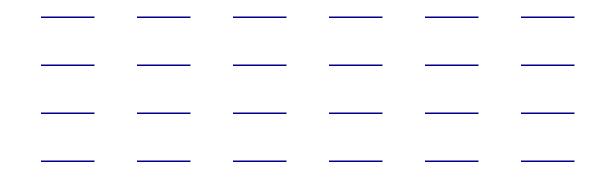
 $x[0] h[j-0] = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & _ & _ & _ & _ &] \\ x[1] h[j-1] = \begin{bmatrix} & 4 & 8 & 12 & 16 & 20 & _ & _ &] \\ x[2] h[j-2] = \begin{bmatrix} & _ & 3 & 6 & 9 & 12 & 15 & _ & _ &] \\ x[3] h[j-3] = \begin{bmatrix} & _ & _ & 1 & 2 & 3 & 4 & 5 & _ &] \\ x[4] h[j-4] = \begin{bmatrix} & _ & _ & _ & 2 & 4 & 6 & 8 & 10 &] \end{bmatrix}$

x[j] * h[j] = x[k] h[j-k]

= [1 6 14 23 34 39 25 13 10]

Example: Two-Dimensional Convolution





Example: Two-Dimensional Convolution

1	1	2	2		1	1	1	
1	1	2	2					
1	1	2	2	*	1	2	1	=
1	1	2	2		1	1	1	
1		2	4		5	4	Ļ	2
2		5	9		12	1	0	4
3		7	13		17	1	4	6
3		7	13		17	14		6
2		5	9		12	10		4
1		2	4		5	4	ŀ	2

Properties of Convolution

- Commutative: f * g = g * f
- Associative: f * (g * h) = (f * g) * h
- Distributive over addition: f * (g + h) = f * g + f * h
- Derivative: $\frac{d}{dt}(f * g) = f' * g + f * g'$

Convolution has the same mathematical properties as multiplication

(This is no coincidence, see Fourier convolution theorem!)

Gaussian

Gaussian: maximum value = 1

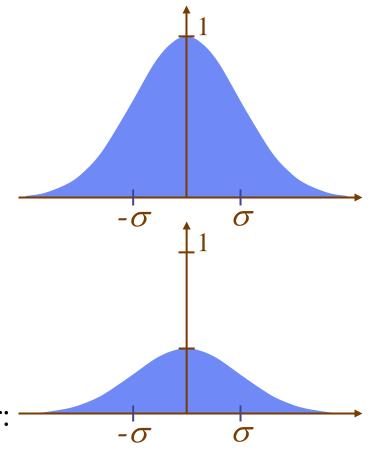
$$G(t,\sigma) = e^{-t^2/2\sigma^2}$$

Normalized Gaussian: area = 1

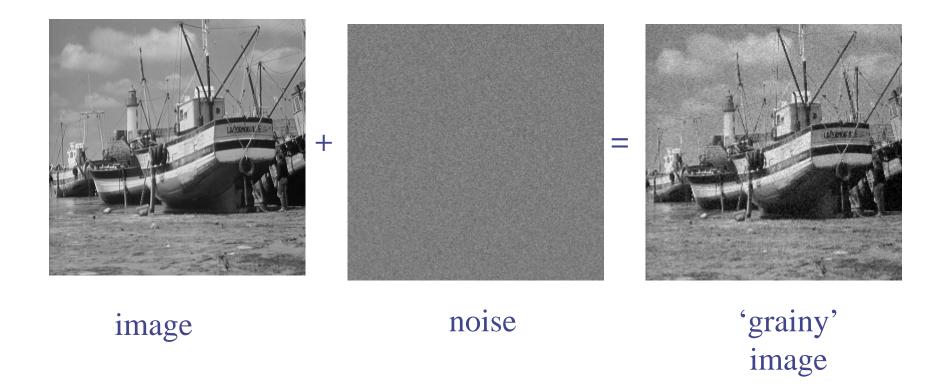
$$G(t,\sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{t^2}{2\sigma^2}}$$

Convolving a Gaussian with another:

$$G(t,\sigma_1) * G(t,\sigma_2) = G(t,\sqrt{\sigma_1^2 + \sigma_2^2})$$



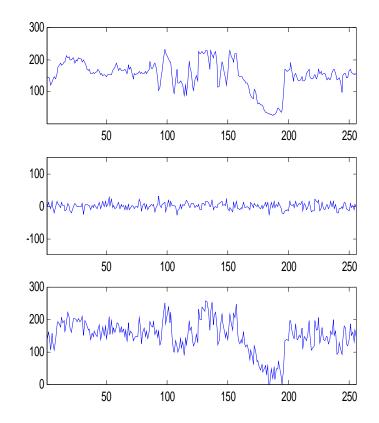
What is Noise?



©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4_02

What is Noise?

- Anything that is NOT signal:
 - Signal is what carries information that we are interested in
 - Noise is anything else
- Noise may be
 - Completely random (both spatially and temporally)
 - Structured
 - Structured randomness



Statistical Review

Mean: The average or expected value

$$\mu = E\{x\} = \frac{1}{N} \sum x$$

Variance: The expected value of the squared error

$$\sigma^{2} = E\{(x - \mu)^{2}\} = E\{x^{2}\} - \mu^{2}$$

Standard Deviation: The square root of the variance

$$\sigma = \sqrt{\sigma^2}$$

Ensembles of Images

Consider the picture $\tilde{I}(x)$ as a random variable from which we sample an ensemble of images from the space of all possibilities

This ensemble (or collection) of images has a mean (average) image, $\bar{I}(x)$

If we sample enough images, the ensemble mean approaches the noise-free original signal

• Often not feasible

Signal-To-Noise Ratio

If we compare the strength of a signal or image (the mean of the ensemble) to the variance between individual acquired images we get a signal-to-noise ratio:

$$SNR = \frac{\mu}{\sigma}$$

The better (higher) the SNR, the better our ability to discern the signal information

Problem: How to measure m to compute the SNR?

Noise and the Frequency Domain

Noisy input:

 $\tilde{I}(x) = \bar{I}(x) + \tilde{n}(x)$

Spectrum of noisy input:

$$\mathcal{F}(\tilde{I}(x)) = \mathcal{F}(\bar{I}(x)) + \mathcal{F}(\tilde{n}(x))$$

- White noise has equally random amounts of all frequencies
- "Colored" noise has unequal amount for different frequencies
- Since signals often have more low frequencies than high, the effect of white noise is usually greatest for high frequencies

Filters

- Low pass filter
 - eliminate high frequencies and leave the low frequencies.
- High pass filter
 - eliminate low frequencies and leave high frequencies.
- Band pass filter
 - only a limited range of frequencies remains
- Gaussian smoothing
 - has the effect of cutting off the high frequency components of the frequency spectrum

Low-Pass Filter

- Recall that quick changes in a signal/image require high frequencies
- High frequency details are often "buried" in noise, which also requires high frequencies
- One method of reducing noise is pixel averaging:
 - Average same pixel over multiple images of same scene
 - Average multiple (neighboring) pixels in single image

Convolution Filtering: Averaging

Can use a square function ("box filter") or Gaussian to locally average the signal/image

- Square (box) function: uniform averaging
- Gaussian: center-weighted averaging

Both of these blur the signal or image

Low-Pass Filtering = Spatial Blurring

Low-pass filtering and spatial blurring are the same thing

Any convolution kernel with all positive (or all negative) weights does:

- Weighted averaging
- Spatial blurring
- Low-pass filtering

They are all equivalent

Filtering and Convolution

Two ways to think of general filtering:

- Spatial: Convolution by some spatial-domain kernel
- Frequency: Multiplication by some frequency-domain filter

Can implement/analyze either way

Low-Pass Filtering

Tradeoff:

Reduces Noise

but

Blurs Image

The worse the noise, the more you need to blur to remove it

Original

After Lowpass filtering

©www.cs.qub.ac.uk/~P.Miller/csc312/image/ presentations/csc312_4_02

"Ideal" Low-Pass Filtering

For cutoff frequency u_c :

$$H(u) = \Pi(u/u_c) = \begin{cases} 1 & \text{if } |u| \le u_c \\ 0 & \text{otherwise} \end{cases}$$

What is the corresponding convolution kernel?

What problem does this cause?

What could you do differently?

Better (Smoother) Low-Pass Filtering

Gentler ways of cutting off high frequencies:

• Hanning

$$H(u) = \begin{cases} 0.5 + 0.5 \cos(\frac{\pi}{2}u/u_c) & \text{if } |u| \le u_c \\ 0 & \text{otherwise} \end{cases}$$

Gaussian

$$H(u) = e^{-\frac{u^2}{2u_c^2}}$$

• Butterworth

$$H(u) = \frac{1}{1 + \left(\frac{u^2}{u_c^2}\right)^n}$$

n controls the sharpness of the cutoff

Sharpening

- Blurring is low-pass filtering, so de-blurring is high-pass filtering:
 - Explicit high-pass filtering
 - Unsharp Masking
 - Deconvolution
 - Edge Detection
- Tradeoff:
 - Reduces Blur

but

Increases Noise

High-Pass Filtering

• "Ideal":

$$H(u) = 1 - \Pi(u/u_c) = \begin{cases} 0 & \text{if } |u| \le u_c \\ 1 & \text{otherwise} \end{cases}$$

• Flipped Butterworth:

$$H(u) = 1 - \frac{1}{1 + (u^2 / u_c^2)^n}$$

High-Pass Filtering vs. Low-Pass Filtering

Original

After Low-pass filtering

©exchange.manifold.net/manifold/manuals/5_userman/mfd50Image__Filter.htm

After High-pass filtering

Convolution Filtering: Unsharp Masking

Unsharp masking is a technique for high-boost filtering. To sharpen a signal/image, subtract a little bit of the blurred input.

Procedure:

- Blur the image.
- Subtract from the original.
- Multiply by some weighting factor.
- Add back to the original.

$$I' = I + \alpha (I - I * g)$$

where I' is the original image, g is the smoothing (blurring) kernel, and I is the final (sharpened) image

Unsharp Masking: Implementation

 $I + \alpha (I - I * g)$

$$\frac{1}{9} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{bmatrix} + \alpha \begin{pmatrix} 0 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \end{pmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} -\alpha & -\alpha & -\alpha \\ -\alpha & 9 + 8\alpha & -\alpha \\ -\alpha & -\alpha & -\alpha \end{bmatrix}$$

Unsharp Masking Image

Original Image

After Unsharp Masking

@www.luminous-landscape.com/tutorials/understanding-series/understanding-usm.shtml

Deconvolution

If we want to "undo" low-pass filter H(u),

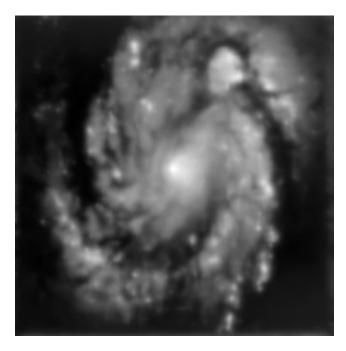
$$H_{inv}(u) = \frac{1}{H(u)}$$

- Problem 1: This assumes you know the point-spread function
- Problem 2: H may have had small values at high frequencies, so H_{inv} has large values (multipliers)

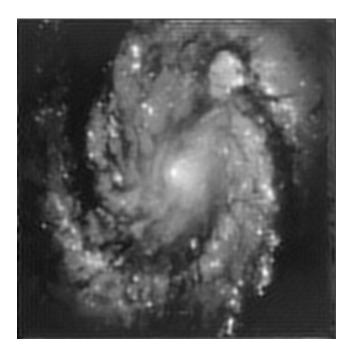
Small errors (noise, round-off, quantization, etc.) can get magnified greatly, especially at high frequencies

This is a common problem for all high-pass methods

Early Hubble space telescope image with precisely known optical aberrations



Before deconvolution



After deconvolution

©www.reindeergraphics.com/tutorial/chap4/fourier12.html

Band-Pass Filtering

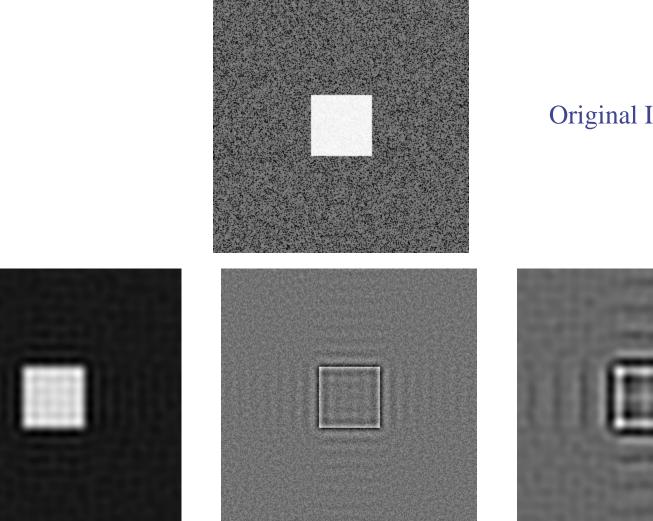
Tradeoff: Blurring vs. Noise

- Low-Pass: reduces noise but accentuates blurring
- High-Pass: reduces blurring but accentuates noise

A compromise:

Band-pass filtering boosts certain midrange frequencies and partially corrects for blurring, but does not boost the very high (most noise corrupted) frequencies

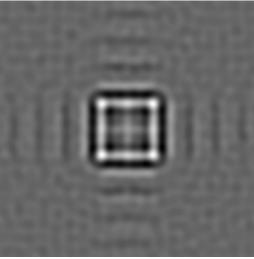
Band-Pass Filtering vs. Low-Pass, High-Pass Filtering



After Low-pass filter

After High-pass filter

Original Image



After Band-pass filter

©astronomy.swin.edu.au/~pbourke/analysis/imagefilter/

Median "Filtering"

Instead of a local neighborhood weighted average, compute the *median* of the neighborhood

- Advantages:
 - Removes noise like low-pass filtering does
 - Value is from actual image values
 - Removes outliers doesn't average (blur) them into result ("despeckling")
 - Edge preserving
- Disadvantages:
 - Not linear
 - Not shift invariant
 - Slower to compute

Median "Filtering"

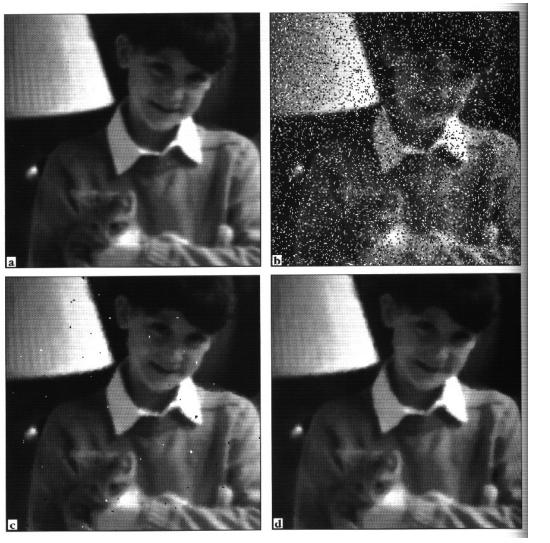


Image a with 10% of the pixels randomly selected and set to black, and another 10% randomly selected and set to white

Application of median filtering to image b using a 3x3 square region

Original image

Application of median filtering to image b using a 5x5 square region

Removal of shot noise with a median filter

©John C. Russ

Figure and Text Credits

Text and figures for this lecture were adapted in part from the following source, in agreement with the listed copyright statements:

http://web.engr.oregonstate.edu/~enm/cs519

© 2003 School of Electrical Engineering and Computer Science, Oregon State University. Dearborn, Corvallis, Oregon, 97331

Resources

Textbook: Kenneth R. Castleman, Digital Image Processing, Chapter 11