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Abstract

Some of the earliest methods for three-dimensional reconstruction from electron microscopic images were developed
for helical objects. Single-particle methods have been used with great success for the three-dimensional reconstruction
of macromolecular assemblies that have no internal symmetry or closed point group symmetries. An approach is
presented for the application of single-particle methods to helical filaments that surmounts many of the difficulties of

helical image analysis, including indexing, unbending and the need to find long helically symmetric filament segments. It
is shown using both human Rad51 and E. coli RecA nucleoprotein filaments that this approach converges without user
intervention to a stable solution, and that it has the potential to overcome many of the problems associated with image

analysis of disordered helical polymers. The method can be applied transparently to structures where Bessel overlap
would greatly complicate helical analysis. In addition, the procedure allows for the ab initio determination of helical
symmetry, when no prior knowledge exists. # 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Many biological macromolecular assemblies
exist as helical polymers. These include, among
many other complexes: F-actin, microtubules,
myosin thick filaments, phage tails, and bacterial
pili and flagella. The bacterial RecA protein, which
can be the most abundant protein in the cell after
DNA damage, forms a helical nucleoprotein
filament with DNA [1]. The eukaryotic Rad51
protein forms a very similar helical filament [2].
The centrality of helical polymers to biology
makes methods for structural studies of such

polymers important. It is thus not coincidental
that the first application of electron microscopic
three-dimensional reconstruction techniques was
to a helical polymer [3]. In the years since, there
have been many refinements and advances, and it
has been possible to use such methods to image at
high-resolution (better than 10 Å) specimens such
as tobacco mosaic virus [4], the acetylcholine
receptor [5], the sarcoplasmic reticulum calcium
pump [6] and bacterial flagella [7].

However, the application of helical methods is
not simple, particularly when the specimens are
flexible and disordered. One initial approach to
dealing with flexibility is to computationally
straighten filaments [8], but this has the potential
for introducing artifacts due to the assumptions
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that need to be made (e.g., that there is no
coupling between bending and twisting, that the
filament undergoes a purely elastic normal mode
of bending, etc.). Another difficulty with helical
analysis is that the indexing of a pattern can be
ambiguous, and the wrong symmetry can be
chosen [9]. Further complications exist when the
filament does not have a precisely defined helical
symmetry, such as F-actin that has a random,
variable twist [10]. A real-space approach to
dealing with the variable pitch of sickle-cell
hemoglobin helical fibers has already been used
[11], and other groups have also employed single-
particle methods to reconstruct helical filaments
[12,13]. Real-space methods allow many advan-
tages over helical approaches, particularly in
surmounting the problem of disorder and flex-
ibility. For highly ordered specimens, such as
tobacco mosaic virus [4] or helical tubes of
membrane proteins [5,6], the advantages may be
less obvious.

A method is presented here for iterative real-
space reconstruction of helical filaments. The
method has been successfully applied to a number
of different specimens, but results are only shown
here for one state each of the human Rad51
protein and the E. coli RecA protein.

2. Results

Fig. 1 shows an electron micrograph of human
Rad51 (hRad51) protein bound to single-stranded
DNA in the presence of ADP and aluminum
fluoride, which together serve as a stable, non-
hydrolyzable analog for ATP. The striations
arising from the �98 Å pitch helix can be seen.
Attempts to use conventional helical methods were
limited by the paucity of long, suitably straight
segments. The indexing of those segments that
were found was complicated and ambiguous, as
very few filament sections yielded reasonable
transforms. We therefore used a three-dimensional
reconstruction of the homologous bacterial RecA
protein [14] as a starting point for a real space
procedure outlined in Fig. 2.

Images of segments of the hRad51 filaments
were collected using an automated procedure

based upon cross-correlation with the projection
of the RecA reference. In this procedure, cross-
correlation peaks were found between a projection
of the RecA reference filament (�400 Å long, or
100 pixels) and the electron micrograph. The
reference projection was then rotated in the plane
by 48, and new cross-correlation peaks were found.
This rotation was repeated 44 times, so that
projections of the reference between 0 and 1808
were used for the cross-correlations. This proce-
dure ignores the polarity of the filaments, which
would require references between 0 and 3608.
However, polarity is best determined in subse-
quent stages, and ignoring it at this point expedites
the selection process. Since the pitch of the
hRad51 filaments was observed to be �98 Å, the
RecA reference reconstruction was generated

Fig. 1. An electron micrograph showing negatively stained

hRad51 protein bound to single-stranded DNA in the presence

of ADP and aluminum fluoride. Micrographs were recorded at

a nominal magnification of 30,000� at an accelerating voltage

of 80 keV using a JEOL 1200 EXII microscope. The scale bar is

2000 Å.
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using Fourier–Bessel methods [3] for a helix with a
symmetry of 37 subunits in six turns of a 98 Å
pitch helix (as opposed to the average 37/6
symmetry of a 93 Å pitch helix for the native
RecA). This change in structure only involved a
change in the helical repeat, c, that is used during
the helical synthesis.

The cross-correlation method yielded 7620
segments, of size 60� 60 pixels (with a sampling
of 4 Å/pixel), each containing slightly more than
two turns of the Rad51 helix. Most of the
segments did not overlap, but subsequent work
with this procedure has suggested that it is most
efficient if there is substantial overlap. This is
because two overlapping segments, related by an

axial displacement, can provide important infor-
mation about the helical symmetry. The size of the
boxes was chosen not to be too long so as to
encounter problems with filament bending and
internal disorder, but not be too short so that
cross-correlations would be ambiguous. This was
determined empirically, and might need to be
optimized for different structures depending upon
these different factors (such as the mass per unit
length, the signal-to-noise ratio, the flexibility,
etc.). The SPIDER software package [15] was used
for most of the operations described. The initial
part of the cycle was the same as has been
applied to objects such as the ribosome [16]: a
multi-reference alignment was used between 90

Fig. 2. The cycle used for the iterative algorithm. The procedure begins with a helically symmetric reference structure (shown at the

top), which is then rotated about the filament axis to generate 90 reference projections. Each reference projection shown is 60� 60

pixels (240 Å� 240 Å), the same size as the raw images. These projections are used in a multi-reference alignment procedure with the

raw images to determine the five parameters associated with each raw image: an azimuthal angle, an in-plane rotation angle, an x-shift,

a y-shift, and a cross-correlation coefficient against the reference. The in-plane rotation and the shifts are applied to each image, and

these ‘‘aligned’’ images are then used with the known azimuthal orientations to generate a 3D reconstruction by back projection. The

resulting volume has had no symmetry imposed upon it, but is clearly a segment of a helical filament. A least-squares procedure (Fig. 3)

is used to determine the helical symmetry of this segment, and these parameters are then imposed to generate a new helically symmetric

reference volume. The entire procedure is then iterated until a stable solution is obtained, with no further changes in helical symmetry.
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projections of the reference RecA filament (at 48
angular increments about the filament axis) and
the raw images. This yielded five parameters for
each filament: a coefficient of correlation with the
most similar reference, an in-plane rotation, an x-
shift, a y-shift, and the azimuthal angular orienta-
tion of the segment (from the known azimuthal
orientation of the reference image that yielded the
highest cross-correlation against the raw image).
Images that had poor correlation coefficients, or
large shifts, were excluded. Back projection was
then used on the resulting aligned images, in what
is essentially a single-axis tilt series with uniform
sampling of all angles and no missing information.
This generated a 3D volume in which no assump-
tions have been made about internal symmetry.

It was apparent that the reconstructed object
was helical, but it was also clear that large edge
effects existed at the ‘‘top’’ and ‘‘bottom’’ of the
filament segment reconstructed. This was ex-
pected, as there was a direct relationship between
the axial length of the search used for the two-
dimensional projection alignments and the length
of the helically symmetric portion of the recon-
structed volume. For example, in Fig. 2 the multi-
reference alignment search is conducted over a
region containing �12 subunits, and large edge
effects in the reconstruction only appear near the
ends of a filament segment which contains �14
subunits. Thus, the reconstruction could be
treated as reasonable within a central spherical
shell. To be conservative, only the central 9
subunits were treated as ‘‘correct’’ within this
volume, and the subunits suffering from potential
edge effects were therefore ignored in the sub-
sequent step.

Helical symmetry was then imposed upon this
central volume (containing 9 subunits) by first
determining the two helical parameters (the
azimuthal rotation, Df, and the axial translation,
Dz) that related each subunit to its neighbors. A
starting guess for Dz was used in a search for Df,
calculating the mean-squared deviation ðhd2iÞ in
density between voxels of density and the density
at eight symmetry-related positions in the central
volume as Df was varied. This was done by first
converting the density array rðx; y; zÞ to cylind-
rical coordinates, sðr; f; zÞ, where the helical axis

was placed along the line r ¼ 0 in the new
coordinate system. For such cylindrical coordi-
nates, symmetry related positions are given by
sðr; fþ nDf; zþ nDzÞ for n¼ � � � ÿ 2; ÿ 1;
0; 1; 2; . . . . The mean squared deviation in density
as a function of the symmetry operators Df and
Dz was calculated by examining a cylindrical slab,

Fig. 3. A least-squares search of the volume generated by back

projection is used to determine the two helical symmetry

parameters: the axial rise (Dz) and the azimuthal rotation (Df)
between two adjacent subunits. Since the two parameters are

coupled, an initial ‘‘guess’’ for Dz is used to determine Df, and
this value of Df is then used for a new determination of Dz.
This needs to be iterated only once, using the updated values of

Dz to determine a new Df and the new value of Df to determine

Dz. The data shown are the mean-square deviations in density

as a function of changes in Dz and Df from a typical search.
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sð04r4rmax; 084f53608; zo4z5zoþDzÞ, and
determining the eight symmetry-related densities
for every element (voxel). From these nine
densities we have a mean density for this element,
and a mean-squared deviation. By summing over
every element in this volume, we obtain the mean-
squared deviation for the entire volume as a
function of the symmetry operator. Fig. 3 shows
the results of such a search for these two
parameters. For the angular component of the
symmetry, Df, the resulting values were fit with a
non-linear algorithm to a quadratic equation of
the form

hd2i ¼aþ bDfþ cðDfÞ2:

Minimization of this function occurs when

Df ¼ ÿb=2c

and this value of Df was then used to find Dz. The
same quadratic fit and minimization was applied
to the search for Dz. The procedure was then
iterated, since the determination of the best value
for Df requires a value for Dz, and vice versa. In
practice, the change of one parameter was small
with respect to a change of the other parameter,
and both parameters remained close to the initial
estimates. The test that these values were the best
estimates came from the fact that there was no
further change in the values of Df and Dz with
further iterations. The parameters Df, Dz were
then imposed upon the three-dimensional volume,
generating a helically symmetric reconstruction.
This completes a full cycle, and the new helically
symmetric reconstruction can be used as the
reference for projections within a new cycle
(Fig. 2).

Several concerns might exist about the method.
Is the final reconstruction dependent upon the

starting model? Will the true helical symmetry be
found, or will the symmetry of the starting model
be imposed upon the results? Fig. 4 presents some

——————————————————————————"

Fig. 4. The convergence of the procedure is shown for various

parameters. The coupled screw symmetry parameters, Df and

Dz, can be seen to converge after �80 cycles. The helical pitch,

p, is a simple function of these two parameters:

p¼ ð3608=DfÞDz and it can be seen that the pitch converges

to a relatively stable value after only a few cycles. An internal

measure of the correctness of the result is the mean value of the

cross-correlation between the raw images and the projections of

the reference volumes. It can be seen that this parameter reaches

the nearly asymptotic value after �60 cycles.
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statistics from 123 cycles of this procedure. The
helical symmetry converges to �6.4 subunits in a
99 Å pitch helix after �80 cycles. This was after
starting with a model having 6.17 subunits per
turn of a 98 Å pitch helix. It can be seen that the
goodness-of-fit between the projections of the
reconstruction and the raw images reaches a
nearly asymptotic value after about 60 cycles.

Fig. 5 shows surfaces of the helically symme-
trized volumes as a function of the number of
cycles. Fig. 5a is the initial reference model, while
Figs. 5b–e are actual reconstructions from the
images. Typically, �4200 images (out of the
starting 7620 images) were included in each
reconstruction, with the remainder being excluded
due to poor coefficients of correlation, large shifts,
or large rotations from either 0 or 1808 (the boxed
segments were extracted after cross-correlation
with a vertically oriented reference filament, so
all of the segments should have in-plane rotations
of �0 or �1808). It can be seen that there is
virtually no change in structure between cycles 80

and 123, consistent with a lack of change in the
helical parameters over these cycles. It can also be
seen that the resulting structure deviates quite
significantly from the starting model. Determina-
tion of resolution is complicated by the fact that
helical averaging is imposed upon the three-
dimensional reconstruction. However, for the
asymmetric reconstruction, the resolution is
judged to be 20 Å using a conservative Fourier
shell correlation threshold of 0.5 between two
different reconstructions generated from two
halves of the data set.

Using the same starting model but images of an
unusual state of the E. coli RecA protein on
double-stranded DNA, it can be seen in Fig. 6 that
the procedure now converges to a very different
solution from that shown in Fig. 5. While normal
RecA-DNA-ATP-g-S filaments have a pitch of
�93 Å [9,14], we have used filaments with a pitch
of 86 Å. These filaments would have been dis-
carded as candidates for helical image analysis,
as additional layer lines beyond the equator and

Fig. 5. Surfaces of the three-dimensional reconstructions are shown for different cycles: (a) the starting reference, a bacterial RecA

filament, generated with a symmetry of 6.1667 subunits per turn of a 98 Å pitch helix; (b) after 10 cycles; (c) after 40 cycles; (d) after 80

cycles; and (e) after 123 cycles. There is virtually no change in the structure between cycles 80 and 123. The resulting filament has a

symmetry of 6.40 subunits per turn of a 99 Å pitch helix.
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the 1/(86 Å) lines were not seen. The single-particle
method, applied to 6964 segments, converges
to a stable solution for both the symmetry
(Fig. 6b and c) and the structure (Fig. 6a) after
�40 cycles. The symmetry that is revealed, 6.05
subunits per turn of an 86 Å pitch helix, explains
the lack of other visible layer lines using
helical diffraction. A computed transform
(Fig. 6d) of the projection of the reconstruction
can be seen to have a small amount of layer-line

splitting, but to predominantly have only the
equator and two orders of the 1/(86 Å) layer
line. The projection was from a helically
symmetrized density containing 125 subunits,
and transforms of shorter segments would not
display any splitting due to layer line broadening.
In the presence of noise the amount of splitting
shown would also be nearly impossible to
detect. Thus, in practice one would rarely observe
more than orders of the 1/(86 Å) layer line

Fig. 6. The surface of a reconstruction (after 53 cycles) from unusual RecA filaments formed on double-stranded DNA with ATP-g-S.
A total of 6964 filament segments of length 240 Å were used in the procedure of Fig. 2. The starting model of Fig. 5a was used as an

initial reference (a symmetry of 37 subunits in 6 turns of a helix), except that the pitch was changed to 95 Å. The difference in final

structure from that obtained in Fig. 5, even though the same initial reference was used for both, illustrates the robustness of the

procedure. The symmetry parameters, Df and Dz, are shown as a function of cycle number (b and c). The computed transform of the

projection of a helically symmetrized reconstruction containing 125 subunits is shown (d). The only non-equatorial layer lines that

would be observed in practice from such a filament are the 1/(86 Å) layer line and its second order at 1/(43 Å). The weaker layer lines at

1/(91 Å) (containing Bessel order 7) and 1/(82 Å) (containing Bessel order ÿ5) would rarely be seen in practice due to layer line

broadening and noise.
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from such filaments, and reconstructing these
filaments using Fourier–Bessel analysis would be
complicated. While the separation of Bessel func-
tions from such overlapping layer lines has been
solved for other specimens [17], the method is
much more complicated and requires more user-
intervention than the fully automated procedure
described here.

Since the method requires both an initial
structure and an initial estimate of the helical
symmetry, it is interesting to explore how far these
can be from the actual structure for proper
convergence to still occur. In Fig. 7 it can be seen
that the radius of convergence is very large. In fact,
the method allows for the ab initio determination
of the helical symmetry of hRad51 filaments.

Fig. 7. A continuous 1-start helical density (a) was used as the initial reference for aligning 7620 segments of hRad51 filaments. A 21
screw symmetry was imposed upon the first reconstruction from these aligned segments, and the symmetrized volume is shown in (b).

After only three more cycles of iterative alignment, reconstruction and symmetrization, a strong modulation by subunits can be seen

(c). The projection down the filament axis for one turn of this structure is shown (e), and it can be seen that the asymmetric unit

contains three subunits (labeled 1, 2 and 3). The 21 symmetry generates the subunits labeled 1*, 2* and 3*. By taking the structure in (c)

after the fifth cycle and iterating only five more times using �6 subunits per turn (rather than �2 subunits per turn), a filament is

reconstructed (d) that is very similar to what was achieved when one started with a known approximate symmetry (Fig. 5). The change

in the symmetry operator Df as a function of the number of iterations is shown (f), and it can be seen that it relaxes from the initial

value of 1808 to a value of �1738.

E.H. Egelman / Ultramicroscopy 85 (2000) 225–234232



Initially, the continuous density along RecA’s 1-
start helix (Fig. 7a) was used as a reference for the
alignment of the 7620 hRad51 segments. This
continuous density distribution has polarity, but
no modulation due to subunits. It was generated
by using a helical reconstruction with only the
equator and the strong layer line corresponding to
the 1-start helix. After alignment, a reconstruction
was generated by back projection. For an infinite
number of images, all modulation along the helix
should cancel since the reference was featureless.
However, for a finite number of images the
reconstruction will contain noise. To aid in
convergence, the simplest helical symmetry was
assumed, which is a 21 screw. This symmetry has
Df ¼ 1808 and Dz ¼ 49 Å, and provides a means
for internal averaging of the reconstructed density.

Fig. 7b shows the result of imposing this 21
symmetry on the first reconstruction. Very weak
modulations of the density can now be seen along
the helix. This is used as a new reference volume, a
search is made (about Df ¼ 1808 and Dz ¼ 49 Å)
for the new symmetry operators, and these are
imposed. After only three more cycles of this
procedure, strong modulation of the helical
density by subunits can now be seen (Fig. 7c). It
is quite clear after these five cycles that there are
approximately 6 subunits per turn of the helix. The
symmetry operators that are found for this fifth
cycle are Df ¼ 179:88 and Dz ¼ 49:1 Å. Since the
rotation operator continues to fall from the initial
1808 (Fig. 7f), it suggests that there are slightly
more than 6 subunits per turn (if it was greater
than 1808, it would suggest slightly less than 6
subunits per turn). A projection down the filament
axis of one turn of the helix in Fig. 7c is shown in
Fig. 7e, where the subunits related by the 21 screw
symmetry are labeled. One could now take this
density and begin a new set of cycles, starting with
a symmetry of Df ¼ 59:98 (179.98/3) and
Dz ¼ 16:4 Å (49.1 Å/3). After just five such addi-
tional cycles, the structure (Fig. 7d) is now nearly
the same as was achieved using 80 cycles with an
initial reference of 6.17 RecA subunits per turn
(Fig. 5d), even though we began with no known
symmetry. Continuing for more cycles leads to the
identical structure (data not shown). If one
continues to cycle using �2 subunits per turn,

the rotation operator falls to Df ¼ 1738 (Fig. 7f),
although it was started at 1808. This suggests an
asymmetric unit containing three subunits, with a
rotation of 57.678 (1738/3) between each. This is
different from the value found in Fig. 4, �56.38 per
subunit, and reflects the limited utility of the noisy
reference that results from enforcing the �21
symmetry. Nevertheless, the procedure converges
after an initial imposition of 21 symmetry, even
though there are �6.4 subunits per turn of the
helix, and not 6.0.

3. Conclusions

The iterative method of real-space reconstruc-
tion of helical filaments has been shown to
converge to a stable solution that is different in
both helical symmetry and structure from the
starting model. Indeed, the method can be used to
determine the helical symmetry of an unknown
structure by imposing a limited averaging, assum-
ing two subunits per turn. For the example shown,
hRad51 filaments, the method actually converges
to a final structure more rapidly when no
assumptions are made about symmetry than when
the structure of a homologous protein, RecA, is
used as a starting model. The results presented
suggest that this approach to determining symme-
try may work on many structures, even if the
helical symmetry is not an even, integral number
of subunits per turn.

A dramatic difference between the approach
presented here and traditional helical methods is
that the entire procedure is largely independent of
human intervention. In contrast, the straightening
and selection of filaments for helical processing is
laborious, requires an experienced individual, and
subjective judgments are frequently required. The
single-particle method is reasonably efficient, and
takes �60min/iteration using 7620 images on an
SGI Octane. Because the most time-consuming
portion of the procedure, the multi-reference
alignment, lends itself to coarse-grained paralleli-
zation, we have been able to reduce this time
considerably using clusters of inexpensive compu-
ters. For example, using a cluster of only five
950MHz PCs (each costing �$1500) it has been
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possible to reduce the time per cycle to 35min.
Due to the coarse-grained nature of the paralleli-
zation, this time scales nearly linearly with the
number of nodes. While this may still be one or
two days of computer time for a stable solution,
there is no user intervention needed. Attempting to
reconstruct such filaments using helical methods
might take the full time attention of a trained
investigator for weeks, or might be nearly im-
possible, as was the case for the examples shown.

It is shown that the procedure can be applied
transparently to structures having a small integral
or nearly integral number of subunits per helical
turn, where Bessel overlap would complicate
helical analysis. The method also lends itself to
more detailed analysis of heterogeneity and sub-
populations. By using several different reference
models, it is possible to sort the images and
reconstruct distinct subgroups. This has been
possible for both F-actin (Galkin, Lukoyanova,
Orlova and Egelman, in preparation) and RecA
(Yu, Jacobs and Egelman, in preparation). Final-
ly, the method can be easily extended to cryo-EM
of filaments in ice, where significant out-of-plane
tilt will be encountered, due to the fact that the set
of reference projections can be expanded to allow
for such tilt.

The programs to implement the procedures
described in this paper will either be available
within SPIDER [15], or may be obtained from the
author.

Acknowledgements

I would like to thank Xiong Yu, Albina Orlova,
Natalya Lukoyanova, Vitold Galkin, and Steve

Jacobs, who have helped in the application of this
method to Rad51, RecA and actin. I would like to
thank Stephen West for generously supplying
human Rad51 protein, Xiong Yu for specimen
preparation and electron microscopy, and Pawel
Penczek for helpful discussions. This work was
supported by NIH GM35269 and AR42023.

References

[1] S.C. West, Ann. Rev. Biochem. 61 (1992) 603.

[2] T. Ogawa, X. Yu, A. Shinohara, E.H. Egelman, Science

259 (1993) 1896.

[3] D.J. DeRosier, A. Klug, Nature 217 (1968) 130.

[4] T.W. Jeng, R.A. Crowther, G. Stubbs, W. Chiu, J. Molec.

Biol. 205 (1989) 251.

[5] A. Miyazawa, Y. Fujiyoshi, M. Stowell, N. Unwin, J.

Molec. Biol. 288 (1999) 765.

[6] P. Zhang, C. Toyoshima, K. Yonekura, N.M. Green, D.L.

Stokes, Nature 392 (1998) 835.

[7] S. Trachtenberg, D.J. DeRosier, F. Zemlin, E. Beckmann,

J. Molec. Biol. 276 (1998) 759.

[8] E.H. Egelman, Ultramicroscopy 19 (1986) 367.

[9] E.H. Egelman, A. Stasiak, J. Molec. Biol. 200 (1988) 329.

[10] E.H. Egelman, N. Francis, D.J. DeRosier, Nature 298

(1982) 131.

[11] D.A. Bluemke, B. Carragher, R. Josephs, Ultramicroscopy

26 (1988) 255.

[12] H. Sosa, A. Hoenger, R.A. Milligan, J. Struct. Biol. 118

(1997) 149.

[13] S.A. Burgess, P. Knight, M. Walker, S. Schmitz, J.C.

Sparrow, J. Trinick, Biophys. J. 78 (2000) 8a.

[14] X. Yu, E.H. Egelman, J. Molec. Biol. 231 (1993) 29.

[15] J. Frank, M. Radermacher, P. Penczek, J. Zhu, Y. Li, M.

Ladjadj, A. Leith, J. Struct. Biol. 116 (1996) 190.

[16] A. Malhotra, P.A. Penczek, R.K. Agrawal, I.S. Gabashvi-

li, R.A. Grassucci, Junemann, N. Burkhardt, K.H.

Nierhaus, J. Frank, J. Molec. Biol. 280 (1998) 103.

[17] R.A. Crowther, R. Padron, R. Craig, J. Molec. Biol. 184

(1985) 429.

E.H. Egelman / Ultramicroscopy 85 (2000) 225–234234


